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Abstract This is a survey on Nichols algebras of diagonal type with finite dimen-
sion, or more generally with arithmetic root system. The knowledge of these algebras
is the cornerstone of the classification program of pointed Hopf algebras with finite
dimension, or finite Gelfand—Kirillov dimension; and their structure should be indis-
pensable for the understanding of the representation theory, the computation of the
various cohomologies, and many other aspects of finite dimensional pointed Hopf
algebras. These Nichols algebras were classified in Heckenberger (Adv Math 220:59—
124, 2009) as a notable application of the notions of Weyl groupoid and generalized
root system (Heckenberger in Invent Math 164:175-188, 2006; Heckenberger and
Yamane in Math Z 259:255-276, 2008). In the first part of this monograph, we give
an overview of the theory of Nichols algebras of diagonal type. This includes a dis-
cussion of the notion of generalized root system and its appearance in the contexts of
Nichols algebras of diagonal type and (modular) Lie superalgebras. In the second and
third part, we describe for each Nichols algebra in the list of Heckenberger (2009)
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the following basic information: the generalized root system; its label in terms of
Lie theory; the defining relations found in Angiono (J Eur Math Soc 17:2643-2671,
2015; J Reine Angew Math 683:189-251, 2013); the PBW-basis; the dimension or
the Gelfand—Kirillov dimension; the associated Lie algebra as in Andruskiewitsch et
al. (Bull Belg Math Soc Simon Stevin 24(1):15-34, 2017). Indeed the second part
deals with Nichols algebras related to Lie algebras and superalgebras in arbitrary
characteristic, while the third contains the information on Nichols algebras related to
Lie algebras and superalgebras only in small characteristic, and the few examples yet
unidentified in terms of Lie theory.

Keywords Nichols algebras - Quantum groups - Weyl groupoid - Modular Lie
algebras

Mathematics Subject Classification 16T05 - 16T20 - 17B22 - 17B37 - 17B50

Alles Gescheidte ist schon gedacht worden, man muf3 nur versuchen es noch einmal zu denken.
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Introduction
What is a Nichols algebra?

1. Let k be a field, V a vector space and ¢ € GL(V ® V). The braid equation on c is
(c ®id)(id ®c)(c ® id) = (id ®c)(c ® id)(id ®c). 0.1)

If ¢ satisfies (0.1), then the pair (V, ¢) is a braided vector space. The braid equation, or
the closely related quantum Yang—Baxter equation, is the key to many developments
in the last 50 years in several areas in mathematics and theoretical physics. Ultimately
these applications come from the representations p,, of the braid groups B, on 7" (V)
induced by (0.1), for n > 2. Indeed, let I,, := {1, 2, ..., n}, where n is a natural
number. Recall that B, is presented by generators (o) jer,_, With relations

n—1

ojoy =0y0j, |j—k|l>=2, ojoxo;=orojor, |j—kl=1. 0.2)

Thus o, applies 0 — idye;-1) ®c ® idyen—j-1.

2. Assume that chark # 2. Let ¢ be a symmetry, i.e. a solution of (0.1) such that
¢? = id. Then g, factorizes through the representation g, of the symmetric group S,
given by s; := (jj + 1) = idyei-y ®c ® idyew-j-1. The symmetric algebra of
(V, ¢) is the quadratic algebra

Se(V) = T(V)/{ker(c +id)) = nen, S (V).

For instance, if ¢ = t is the usual transposition, then S.(V) = S(V), the classical
symmetric algebra; while if V. = V() @ V; is a super vector space and c is the super
transposition, then S.(V) >~ S(Vp)®@A(V1), the super symmetric algebra.

The adequate setting for such symmetries is that of symmetric tensor categories,
advocated by Mac Lane in 1963. In this context, the symmetric algebra satisfies the
same universal property as in the classical definition. In particular, symmetric algebras
are Hopf algebras in symmetric tensor categories. Assume that char k = 0. Then, as
vector spaces,

SPV) = T"(V) =1Im [, =~ T"(V)/ker [, 0.3)

where [ = Y ses, 0n($):T"(V) — T" (V).

3. The adequate setting for braided vector spaces is that of braided tensor cate-
gories [56]; there is a natural notion of Hopf algebra in such categories.

Let H be a Hopf algebra (with bijective antipode). Then H gives rise to a braided
tensor category ZJ}D [39], and consequently is a source of examples of braided vector
spaces. Namely, an object M € ZJ)D, called a Yetter—Drinfeld module over H, is
simultaneously a left H-module and a left H-comodule satisfying the compatibility
condition

8(h-v) =hayv)Sha) @hwp) -vo, heH, veV. 0.4)
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This is a braided tensor category with the usual tensor product of modules and comod-
ules, and braiding

cuNERY) =x—1)-y®x0), M,NEe ZyD, xeM,yeN. 0.5)

For M € ZyD, c=cu.m € GL(M ® M) satisfies the braid equation (0.1).

IfM e Z))D, then the tensor algebra 7' (M) is a Hopf algebra in g))D, whose
coproduct is determined by A(x) = x ® 1 + 1 ® x for x € M. Also the tensor
coalgebra T¢(M) is a Hopf algebra in ZyD, with braided shuffle product. See [76,
Proposition 9].

4. Let (V, ¢) be a braided vector space but ¢ not necessarily a symmetry. The Nichols
algebra B(V) = @,en,B" (V) of (V, ¢) is a graded connected algebra with a number
of remarkable properties that has at least superficially a resemblance with a symmet-
ric algebra.l For, let M,,: S, — B, be the (set-theoretical) Matsumoto section, that
preserves the length and satisfies M, (s;) = o;. Let Q, = ZoeS,, on(M,(0)) and
J"(V) = ker Q,,. Define

TJV)=@u=2J"(V), BV)=TV)/TV). (0.6)

Despite the similarity of (0.3) and (0.6), Nichols algebras have profound diver-
gences with symmetric algebras—and various analogies.

(a) The subspace 7 (V) is actually a two-sided ideal of 7'(V), so that 5(V) is a con-
nected graded algebra generated in degree 1. However 7 (V) is seldom quadratic,
and it might well be not finitely generated. The determination of 7 (V) is one of
the central problems of the subject.

(b) Although (0.6) is a compact definition, it hides the rich structure of Nichols
algebras. Indeed, B(V) is a Hopf algebra in ZyD for suitable H. Even more, it
is a coradically graded coalgebra, a notion dual to generation in degree one.

(c) If V is a finite-dimensional vector space, then S(V*) is identified with the alge-
bra of differential operators on S(V) (with constant coefficients). An analogous
description is available for Nichols algebras, being useful to find relations of
B(V).

(d) Nichols algebras appeared in various fronts. In [71], they were defined for the first
time as a tool to construct new examples of Hopf algebras. They are instrumental
for the attempt in [86] to define a non-commutative differential calculus on Hopf
algebras. Also, the positive part U, ;r (g) of the quantized enveloping algebra of a
Kac—Moody algebra g at a generic parameter ¢ turns out to be a Nichols algebra
[67,75,78].

By various reasons, we are also led to consider:

e Pre-Nichols algebras of the braided vector space (V, ¢) [26,69]; these are graded
connected Hopf algebras in #YD, say B = @pen,B", with B! ~ V, that are

Uris customary to omit ¢ in the notation of the Nichols algebra.
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358 N. Andruskiewitsch, I. Angiono

generated in degree 1 (but not necessarily coradically graded). Thus we have
epimorphisms of Hopf algebras in ZyD

T(V) B B(V).

e Post-Nichols algebras of the braided vector space (V, c) [7]; these are graded
connected Hopf algebras in ZyD, say £ = BpeN,E", with £ '~ Vv, that are
coradically graded (but not necessarily generated in degree 1). Thus we have
monomorphisms of Hopf algebras in ZyD

B(V)¢ S TC(V).

Thus, the only pre-Nichols algebra that is also post-Nichols is B(V) itself.

Classes of Nichols algebras

5. Nichols algebras are basic invariants of Hopf algebras that are not generated by its
coradical [11,18]; see the discussion in Sect. 1.7. One is naturally led to the following
questions.

Classify all V € ZyD such that the (Gelfand—Kirillov) dimension of B(V) is finite.
For such 'V, determine the generators of the ideal [J (V') and all post-Nichols algebras
B(V) — & with finite (Gelfand—Kirillov) dimension

Now B(V) is a Hopf algebra in ZyD but the underlying algebra depends only on the
braiding ¢, and reciprocally the same braided vector space can be realized in ZyD
in many ways and for many H'’s. That is, we may deal with the above problems for
suitable classes of braided vector spaces.

Also, assume that (V, ¢) satisfies, for some 6 € N. 1,

V=Vi@ -0V, cVi@V)=V,®V;, ijely. 0.7

So, we may suppose that the B(V;)’s are known and try to infer the shape of B(V)
from them and the cross-braidings c|v,gv;; this viewpoint leads to a rich combinatorial
analysis [5,16,44,48,50,52].

6. The simplest yet most fundamental examples are those (V, ¢) satisfying (0.7) with
dimV; =1,i e [ =1I.Pickx; € V; —0;then (x;);erisabasisof V,and c(x; ® x;) =
gij xj @ xi, i, j € I, where g;; € k*. We say that (V, ¢) is a braided vector space of
diagonal type if

qii #1, foralli el.

Notice that this condition, assumed by technical reasons, is not always required in the
literature. See [5, Lemma 2.8].
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This class appears naturally when H = kI', where I' is an abelian group, but also
lays behind any attempt to argue inductively. Other classes of braided vector spaces
were considered in the literature:

(a) Triangular type, see [5,84].

(b) Rack type, arising from non-abelian groups, see references in [1].

(c) Semisimple (but not simple) Yetter—Drinfeld modules [5,48-50], and references
therein.

(d) Yetter—Drinfeld modules over Hopf algebras that are not group algebras, see for
example [4,13,14,43,54,55].

Nichols algebras of diagonal type

7. Assume now that k is algebraically closed and of characteristic 0. The classification
of the braided vector spaces (V, ¢) of diagonal type with finite-dimensional B(V) was
obtained in [46]. (When char k > 0, the classification is known under the hypothesis
dim V < 3[51,85]). The core of the approach is the notion of generalized root system;
actually, the paper [46] contains the list of all (V, ¢) of diagonal type with connected
Dynkin diagram and finite generalized root system (these are called arithmetic). The
list can be roughly split in several classes:

e Standard type [2], that includes Cartan type [19]; related to the Lie algebras in the
Killing—Cartan classification.

e Super type [10], related to the finite-dimensional contragredient Lie superalgebras
in characteristic 0, classified in [57].

e Modular type [3], related to the finite-dimensional contragredient Lie (super)
algebras in positive characteristic, classified in [29,59].

e A short list of examples not (yet) related to Lie theory, baptised UFO’s.

The goal of this work is to give exhaustive information on the structure of these
Nichols algebras.

8. This monograph has three Parts. Part I is an exposition of the basics of Nichols
algebras of diagonal type. Section 1 is a potpourri of various topics needed for further
discussions. The bulk of this Part is Sect. 2 where the main notions that we display
later are explained: PBW-basis, generalized root systems, and so on. In Parts II and
IIT we give the list of all finite-dimensional Nichols algebra of diagonal type (with
connected Dynkin diagram) classified in [46] and for each of them, its fundamental
information. For more details see Sect. 3, p. 47.

Part I. General facts
1 Preliminaries
1.1 Notation

In this paper, N = {1,2,3,...} and Npo = N U {0}. If k£ < 6 € Ny, then we denote
]Ik,g ={neNypk<n<6}.Thusly = ]Il’g.
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360 N. Andruskiewitsch, I. Angiono

The base field k is algebraically closed of characteristic zero (unless explicitly
stated); we set k* = k — 0. All algebras will be considered over k. If R is an algebra
and J C R, we will denote by (J) the 2-sided ideal generated by J and by k(J) the
subalgebra generated by J, or k[J] if R is commutative. Also Alg(R, k) denotes the
set of algebra maps from R to k.

For each integer N > 1, Gy denotes the group of Nth roots of unity in k, and G/,
is the corresponding subset of primitive roots (of order N). Also GooAz Uwn nGn,
G = Go — {1}. We will denote by I" an abelian group and by I' the group of
characters of I.

We shall use the notation for g-factorial numbers: forg € k™, n € N,

Og!=1, Mg=1+g+-+4""" )y =1)Q24...(),.

1.2 Kac-Moody algebras

Recall from [58] that A = (a;;) € Z°*? is a generalized Cartan matrix (GCM) if for
alli,j el

aij =2, ajj=<0,i#j, a;=0 <= aj;=0. (1.1)

It is equivalent to give Cartan matrix or to give a Dynkin diagram, cf. [58]. Also, A
is indecomposable if its Dynkin diagram is connected, see [58]; and is symmetrizable
if there exists a diagonal matrix D such that DA is symmetric. Indecomposable and
symmetrizable GCM’s fall into one of three classes:

(a) Finite; those whose corresponding Kac—Moody algebra has finite dimension, i.e.
those in Killing—Cartan classification.

(b) Affine; those whose corresponding Kac—Moody algebra has infinite dimension
but is of polynomial growth.

(c) Indefinite; the rest.

Let A be a GCM. We denote by g(A) the corresponding Kac—Moody algebra, see
[58] and Sect. 2.8 below. Also A?_ denotes the set of positive roots, so that AL =
A% U — A% is the set of all roots. Further, Aﬁ’re, Aﬁ’lm, are the sets of positive real,

respectively imaginary, roots.

1.3 Hopf algebras

We use standard notation for coalgebras and Hopf algebras: the coproduct is denoted
by A, the counit by ¢ and the antipode by S. For the first we use the Heyneman—
Sweedler notation A(x) = > x(1) ® x(2); the summation sign will be often omitted.
All Hopf algebras are supposed to have bijective antipode; the composition inverse of
S is denoted by S. Let H be a Hopf algebra. We denote by G (H) the set of group-
like elements of H. The tensor category of finite-dimensional representations of H
is denoted Rep H. If the group of group-likes G(H) = T is abelian, g € I" and
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On finite dimensional Nichols algebras of diagonal type 361

X € T, then P(XI g)(H ) denotes the isotypical component of type x of the space of
(1, g)-primitive elements.
For more information on Hopf algebras see [70,73].

1.4 Yetter—Drinfeld modules

The definition of these was given in Sect. 3 of the Introduction.
As in every monoidal category, there are algebras and coalgebras in Z YD:

e (A, ) is an algebra in /YD means that A is an object in # VD that bears an
associative unital multiplication y such that u: AQ A — A and the unitu:k — A
are morphisms in #YD.

e (C, A) is a coalgebra in ZyD means that C is an object in ZyD that bears a
coassociative counital comultiplication A such that A: C — C ® C and the counit
&: C — k are morphisms in ZyD.

The category of algebras in ZyD is again monoidal; if (A, wa), (B, up) are alge-
bras in ZyD, then AQB := (A ® B, agp) also is, where

Maes = (na @ up)(ida ®cp 4 ®idp). (1.2)

Analogously, if (C, Ac), (D, Ap) are coalgebras in ZyD, then CQD = (C ®
D, Acgp) also is, where

Acgp = (idc ®cc,p ®idp)(Ac ® Ap). (1.3)

We are mainly interested in the case H = kI', where I" is an abelian group; a

Yetter—Drinfeld module over kI is a I'-graded vector space M = €, M; provided
with a linear action of I' such that

t-My=M,, thel. (1.4)

Here (1.4) is just (0.4) in this setting. Morphisms in %12 YD are linear maps preserving
the action and the grading. Let M € %F YD. Then we set

Ml ={veM:h-v=yxMhv,VheT}, teTl, xel.
The braiding cpr y: M @ N - N ® M, cf. (0.1), is given by

cMNX®y)=t-y®x, xeM,,tel,yeN. (1.5)

1.5 Braided Hopf algebras
Since it is a braided monoidal category, there are also Hopf algebras in Z;W). Let us

describe them explicitly when H = kI, I" an abelian group, for illustration. A Hopf
algebra in KF YD is acollection (R, i, A), where
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362 N. Andruskiewitsch, I. Angiono

R € ;LYD;

(R, ) is an algebra in ﬁ;yp and (R, A) is a coalgebra in %ﬁ;yl);
A:R — RQ®R and ¢: R — k are algebra maps;

R has an antipode Sg, i.e. a convolution inverse of the identity of R.

Let R be a Hopf algebra in {pr. Then R#kI" = R ® kI with the smash prod-
uct algebra and smash coproduct coalgebra structures is a Hopf algebra, called the
bosonization of R by kI, see [68, Theorem 6.2.2].

The adjoint representation ad, : R — End R is the linear map given by

ade x(y) = n(n @ S)(Id ) (AQid)(x ® y), x,y €R. (1.6)

It can be shown that ad. x(y) = ad x(y), x, y € R, where ad is the adjoint represen-
tation of R#KI.

1.6 Nichols algebras

We are now ready to discuss the central notion of this monograph. At the beginning
we place ourselves in the context of a general Hopf algebra H with bijective antipode,
although for the later discussion from Sect. 2 on, H = kI', I' an abelian group, is
general enough.

LetV € Z))D. Clearly the tensor algebra 7'(V) and the tensor coalgebra 7¢(V)
are objects in ZJ}D. Then:

e There is an algebra map A: T(V) — T(V)®T (V) determined by
AW)=v@1+1Qv, velV,;

with this, 7 (V) is a graded Hopf algebra in ’,ij.
e There is a coalgebra map p: T°(V)®T (V) — T¢(V) determined by

p@h=v=pul®v), veV;

with this, 7¢(V) is a graded Hopf algebra in ZyD [76, Proposition 9].
e There is a morphism Q: 7 (V) — T(V) of graded Hopf algebras in ZJ}D such
that Qy = idy. We denote 2, = Q|rn(v), sothat Q =" Q.

Definition 1.1 The Nichols algebra B(V) is the quotient of the tensor algebra 7'(V)
by the ideal 7 (V) := ker €2, which is (isomorphic to) the image of the map 2. Thus,
J(V) = @u=2T"(V), where J"(V) = ker Q.

Nichols algebras play a fundamental role in the classification of pointed Hopf alge-
bras, see [20] and Sect. 1.7 below. As algebras or coalgebras, their structure depends
only on the braided vector space (V, ¢) and not on the realization in Z))D, cf. Propo-
sition 1.2(a). We now state various alternative descriptions of 5(V'), or more precisely
of the ideal 7 (V) = @,>2J" (V). To start with we introduce the left and right skew
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On finite dimensional Nichols algebras of diagonal type 363

derivations. See e.g. [16] for more details. Let f € V*. Let BJI: = 5f € End T (V) be
given by

9:(1) =0, ()= f(v),Yv eV, (1.7)
Gp(ey) =,y + Y x95(),  wheree ' (f®x) =) x®fi. (18

1

Analogously, let 8}? = dy € End T(V) be given by (1.7) and

dp(xy) =x0p(y)+ Y 8, (0)yj, wherec 'y ® )= fi®y;. (19
j j

Let us fix a basis (x;);er of V and let (f;);e1 be its dual basis; set 9; = 9, 51 = 5}3’
i € I. There is a particular instance where (1.9) has a simpler expression: assume that
there exists a family (g;)icr in G(H) such that §(x;) = g; ® x;, forevery i € I. Then
(1.9) for all f is equivalent to

9 (xy) = x0;(y) +9i(x) gi -y, x,yeT(V), iel (1.10)

Recall the Matsumoto section M,,:S,, — B, cf. Sect. 4 of the Introduction. Here
are the promised alternative descriptions.

Proposition 1.2 (a) Q, = ZoeSn on (M, (0)).

(b) J(V) is maximal in the class of graded Hopf ideals J = @,>2J" in T(V) that
are sub-objects in ZyD.

(¢) J(V) is maximal in the class of graded Hopf ideals J = @,>2J" in T (V) that
are categorical braided subspaces of T (V') in the sense of [83].

(d) J (V) is the radical of the natural Hopf pairing T(V*) @ T (V) — k induced by
the evaluation V* x V — k.

(e) IfB = @,>0B" isagraded Hopfalgebra inZJ)D withB =k, P(B) =B ~ V,
B = Kk(BYY, then B~ B(V).

) Letx e T"(V), n > 2. If 35 (x) = 0 forall f in a basis of V¥, then x € J"(V).

(@) Letx e T"(V), n > 2. If 9y (x) =0 for all f in a basis of V*, then x € J"(V).

The proofs of various parts of this Proposition can be found e.g. in [15,16,20,67,
75,76,78]. The characterizations (a), (b) and (c) are useful theoretically; in practice,
(a) is applicable only for small n, mostly n = 2. In turn, (d), (f) or (g) are suitable
for explicit computations; notice that an iterated application of (f) provides another
description of 7 (V). In fact the skew derivations 9 descend to B(V') and

() kerd; =kinB(V).
fev*
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1.7 Nichols algebras as invariants of Hopf algebras

The applications of Nichols algebras to classification problems of Hopf algebras go
through the characterization (e). As in every classification problem, one starts by
considering various invariants, seeking eventually to list all objects in terms of them.
To explain this, let us consider a Hopf algebra A (with bijective antipode). If D, E are
subspaces of A, then

DANE ={xceA:Ax)eDRA+AQRQE}.

The first invariants of the Hopf algebra A are:

e The coradical Ag, which is the sum of all simple subcoalgebras.

e The coradical filtration (A,),ecn,, Where A, 11 = A, A Ap.

e The subalgebra generated by the coradical, denoted Ao and called the Hopf
coradical.

e The standard filtration (A[,])neNy. Where A[,+1] = A A Ajoy.

e The associated graded Hopf algebra gr A = @,>0 21" A, gr’ A = Ao, gr" 7' A =
Afny11/An)-

The first two are just invariants of the underlying coalgebra, while the last three
mix algebra and coalgebra information.

Clearly, Ao is a subalgebra iff Ag = A|g); in this case the method outlined below
was introduced in [18,20], see also [21], the extension being proposed in [11]. For
simplicity we address the problem of classifying finite-dimensional Hopf algebras,
but this could be adjusted to finite Gelfand—Kirillov dimension. The method rests on
the consideration of several questions. First, one needs to deal with the possibility
A = A[p). Formally, this means:

Question 1.11 Classify all finite-dimensional Hopf algebras generated as algebras by
their coradicals.

This seems to be out of reach presently; see the discussion in [11]. Notice that there
are plenty of finite-dimensional Hopf algebras generated by the coradical; pick one of
them, say L. Recall that fyD is the category of its Yetter—Drinfeld modules. Let A
be a finite-dimensional Hopf algebra and suppose that Ajg) > L. Then gr A splits as
the bosonization of L by the subalgebra of coinvariants R, i.e.

grA >~ R#L,

see e.g. [20,68] for details. Actually this gives two more invariants of A:

e R =®,>0R", a graded connected Hopf algebra in in. It is called the diagram
of A.
e V=R an object of IL‘yD called the infinitesimal braiding of A.

It is then natural to ask:

Question 1.12 Classify all graded connected Hopf algebras R in IL‘JJD such that
dim R < oo.
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The subalgebra k()) of R projects onto the Nichols algebra B()), i.e. it is a
pre-Nichols algebra of V; this is how Nichols algebras enter into the picture. Thus
the classification of all finite-dimensional Nichols algebras in ﬁ)}D is not only part of
Question 1.12 but also a crucial ingredient of its solution. Even more, in some cases all
possible R’s are Nichols algebras. We introduce a convenient terminology to describe
them.

Definition 1.3 An object V € ﬁyD is fundamentally finite if

(1) dim B(V) < oo;

(2) if R is a pre-Nichols algebra of V and dim R < oo, then R >~ B(V);
(3) if R is a post-Nichols algebra of V and dim R < oo, then R >~ B(V).

Notice that there is some redundancy in this Definition: for example, if V is of
diagonal type such that (1) holds, then (2) and (3) are equivalent.

Thus, if the infinitesimal braiding V of A is fundamentally finite, then R >~ B(V).
In consequence, if every V € %yD with dim B(V) < oo is fundamentally finite, then
any R as in Question 1.12 is a Nichols algebra.

Assume that L is a cosemisimple Hopf algebra, i.e. the context where Ay = Ajq)
[20]. Then the subalgebra k()’) of the diagram R is isomorphic to the Nichols algebra
B(V). The question of whetherevery V € fyD withdim B(V) < oois fundamentally
finite, when L = kG is the group algebra of a finite group, is tantamount to

Conjecture 1.4 [19] Every finite-dimensional pointed Hopf algebra is generated by
group-like and skew-primitive elements.

For instance, the Conjecture is true for abelian groups [24]; this translates to the fact
all braided vector spaces V of diagonal type and dim B(V) < oo, are fundamentally
finite.

Finally, here is the last Question to be addressed within the method [11].

Question 1.13 Given L and R as in Questions 1.11 and 1.12, classify all their liftings,
i.e. all Hopf algebras H such that gr H = R#L.

To solve this Question, we need to know not only the classification of all finite-
dimensional Nichols algebras in %yD, but also a minimal set of relations of each of
them.

2 Nichols algebras of diagonal type
In this section we present the main features of Nichols algebras of diagonal type.
The central examples are the (positive parts of the) quantized enveloping algebras

that where intensively studied in the literature, see for instance [65-67,74,76,87]. We
motivate each of the notions by comparison with the quantum case.

2.1 Braidings of diagonal type

In this subsection and the next, we set up the notation to be used in the rest of the
monograph.
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Let € Nand I =Iy. Let q = (i;)i,jer € ()™ such that
qii #1, foralli el (2.1)

Let gij := qijqji. The generalized Dynkin diagram of the matrix q is a graph with 6

vertices, the vertex i labeled with g;;, and an arrow between the vertices i and j only

if gi; # 1, labeled with this scalar g;;. For instance, given { € G, and « a square
4 4 11

root of ¢, the matrices <;11 _11> ; <§ll K_1> have the diagram:

K

11
LI (2.2)

(0]

Let V be a vector space with a basis (x;);er; definec? =c:VQV — V®V by
c(x; ®x;) =qijxj ®x;,i, j € L. Then c is a solution of the braid equation (0.1). The
pair (V, ¢) is called a braided vector space of diagonal type.

Two braided vector spaces of diagonal type with the same generalized Dynkin
diagram are called twist equivalent; then the corresponding Nichols algebras are iso-
morphic as graded vector spaces [20, Proposition 3.9]. If they correspond to matrices
q = (gij)i,jer and p = (p;j)i, jeI, then twist equivalence means that

gijqji = pijpji gii = pii foralli #j el

For example, q and q' are twist equivalent.

Now let I' be an abelian group, (g;);cr a family in I' and (x;);er a family in T. Let
V be a vector space with a basis (x;);er; then V € %ﬁ; YD by imposing x; € Vg)fi ,iel
The corresponding braided vector space (V, ¢) with ¢ given by (1.5) is of diagonal
type; indeed

c(xi ®xj) = xj(g)x; ®x;, i,jel

2.2 Braided commutators

Let (V, c¢) be a braided vector space of diagonal type attached to a matrix q as in
Sect. 2.1. As in [7], we switch to the notation By = B(V), Jq = J(V) and so on.

Let («;);er be the canonical basis of 7X 1t is clear that T (V) admits a unique 78
graduation such that degx; = «; (in what follows, deg is the Z'-degree). Since c is
of diagonal type, Jg is a Z"-homogeneous ideal and Bg is 7Z!-graded [20, Proposition
2.10], [67, Proposition 1.2.3].

Next, the matrix q defines a Z-bilinear form q: Z! x Z — k* by q(« i 0k) = qjk
forall j, k € I. Set qop = q(o, B), @, B € 7L also, dip = Ya; 8-

Let R be an algebra in %11: YD. The braided commutator is the linearmap [, ].: R®
R — R given by

[x,yle=pod—c)(x®y), x,y€R. 2.3)
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In the setting of braidings of diagonal type, braided commutators are also called g-
commutators. Assume that R = T'(V) or any quotient thereof by a Z'-homogeneous
ideal in %ﬁFyD, sothat R = @, 71 Ry. Letu, v € Rbe Zﬂ-homogeneous withdegu =
a,degv = B. Then

cU®V) =degv @ u. 2.4)

Thus, if y € Ry, then

[xi, yle =xiy — Qia yxi, i €L (2.5)

Notice that ad. x(y) = [x, y]., in case x € V and y in R. The braided commutator is
a braided derivation in each variable and satisfies a braided Jacobi identity, i.e.

[u, vw], = [u, v]e w + qop v [u, W], , (2.6)
[uv, wl, = qpy [u, wlecv+ulv, wl., 2.7
[[u, vle, w], = [u, [v, wle], = qup v [u, wle + qpy [, wlev, (2.8)

for u, v, w homogeneous of degrees «, 8, y € N?, respectively.
For brevity, we set

xij =adex;j(xj), i#jel; (2.9)
more generally, the iterated braided commutators are
Xiyia..ip = (@dexy) ... (ade x; ) (i), iy, ..., 0k € L. (2.10)
In particular, we will use repeatedly the following further abbreviation:
X(kl) = Xk (k1) (k42)..0, k<. (2.11)

Beware of confusing (2.11) with (2.9). Also, we define recursively x(u+1)a;+ma;
m € N, by

Xoupra; = (ade x)2x) = x5, 2.12)
X(m42)a;+(m+Daj = [x(m+1)ai+m°‘j’ (ad, xi)xj]c'

These commutators are instrumental to reorder products. For example, we can prove
recursively on m that, for all m,n € N,

m
m —_j —_j : —j
X (ade x1)"xy =) ( ) a" Pty (ade x))"Hxpx (2.13)

j=0 q11
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2.3 PBW-basis and Lyndon words

An unavoidable first step in the study of quantum groups U, (g) is the description of
the PBW-basis (alluding to the Poincaré-Birkhoff—Witt theorem), obtained for type
A in [33,74,87] and for general g in [65,66]. Here g is simple finite-dimensional,
for other Kac—Moody algebras see Remark 2.18. Indeed, it is enough to define the
PBW-basis for the positive part Uq+ (g), where it is an ordered basis of monomials
in some elements, called root vectors. These root vectors are defined using the braid
automorphisms defined by Lusztig; actually they can be expressed as iterated braided-
commutators (2.10), and there as many as Aﬁ, where A is the Cartan matrix of g.
However they are not uniquely defined (even not up to a scalar); it is necessary to fix
areduced decomposition of the longest element of the Weyl group to have the precise
order in which the iterated commutators produce the root vectors. For general Nichols
algebras of diagonal type, there is a procedure that replaces the sketched method, which
consists in the use of Lyndon words [64], as pioneered in [60], see also the detailed
monograph [61] (this approach also appeared later in [77]). In this Subsection we give
a quick overview of this procedure, fundamental for the description of the Nichols
algebras of diagonal type.

We shall adopt the following definition of PBW-basis. Let A be an algebra. We
consider

e asubsety # P C A;
e asubset § # S C A provided with a total order < (the PBW-generators);
e afunction i: S — N U {00} (the height).

Let B = B(P, S, <, h) be the set
B={psf‘...sf’: teNg, s; €S8, peP, s1>--- >, 0<e,~<h(s,-)}.

If B is a k-basis of A, then we say that it is a PBW-basis. Our goal is to describe
PBW-bases of some graded Hopf algebras R in ﬁgyp (with P = {1}), following
[60]; by bosonization, one gets PBW-bases of the graded Hopf algebras R#kI" (with
P =T this time).

Remark 2.1 In the definition of PBW-basis, one would expect that
h(s) =min {t e N:s' =0}, s€S; (2.14)

however this requirement is not flexible enough. For instance, consider the algebra
B = k{xp, )62|xfV — xé”, X1Xp — gxpx1), where N, M > 2 and ¢ € k*. Then B has
a PBW-basis with P = {1}, S = {x1, x2}, x1 < x2, h(x1) = N and h(xp) = oo.
Kharchenko’s theory of hyperletters based on Lyndon words does not apply with the
stronger (2.14). Indeed let q = (;UA; wq ) where wy € G)y, wy € G),; then B is
M

a quotient of 7' (V') by a Hopf ideal, that is homogeneous if M = N, so that Theorem
2.6 provides the PBW-basis described, but without (2.14).
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2.3.1 Lyndon words

Let X be a set with 6 elements and fix a numeration xp, ..., xg of X. Let X be the
corresponding vocabulary, i.e. the set of words with letters in X, endowed with the
lexicographic order induced by the numeration. Let £: X — Ny be the length.

Definition 2.2 An element u € X — {1} is a Lyndon word if u is smaller than any of
its proper ends; i. e., if u = vw, v, w € X — {1}, then u < w. The set of all Lyndon
words is denoted by L.

Here are some basic properties of the Lyndon words.

(a) Letu € X— X.Thenu is Lyndon if and only if for each decomposition # = uju>,
where uy,uy € X — {1}, onehas ujur, = u < usuj.

(b) Every Lyndon word starts by its lowest letter.

(c) (Lyndon). Every word u € X admits a unique decomposition as a non-increasing
product of Lyndon words (the Lyndon decomposition):

u=hlp...l,, lieL <---<lI (2.15)

the words /; € L appearing in (2.15) are the Lyndon letters of u.

(d) The lexicographic order of X turns out to coincide with the lexicographic order
in the Lyndon letters—i.e. with respect to (2.15).

(e) (Shirshov). Letu € X — X. Thenu € L if and only if there exist u1, up € L such
that uy < wupandu = ujus.

Definition 2.3 The Shirshov decomposition of u € L — X is the decomposition u =
uuy, with uy, up € L, such that u; is the lowest proper end among the ends of such
decompositions of u.

Let us identify X with the basis of V defining the braiding and consequently X with
abasis of T (V). Using the braided commutator (2.3) and the Shirshov decomposition,
we define [ ].: L — End T(V), by

u, ifu=1oruce X;
[ule == §[[v]., [w].]e, ifu € L, £(u) > 1 and u = vw is the Shirshov
decomposition of u.

The element [u],. is called the hyperletter of u € L.Thisleads to define a hyperword
as a word in hyperletters. We need a more precise notion.
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Definition 2.4 A monotone hyperword is a hyperword [ul]lé1 ... [um]]c"”, where u; >
- > u,, are Lyndon words.

Remark 2.5 [61, Lemma2.3] Letu € L,n = £(u). Then [u]. is a linear combination

[u]c =u-+ Z PzZ,

u<zeX: degz=degu
where p. € Z[qgij:i, j €1

The order of the Lyndon words induces an order on the hyperletters. Consequently
we consider the lexicographic order in the hyperwords. Given two monotone hyper-
words W, V, it can be shown that

W =l[wile...[wnle >V =[vile...[v]le, w1 = =wp, vi=--=u,
ifandonlyifw=wj... w, >v=v;...v.
2.3.2 PBW-basis

Let / be a homogeneous proper 2-sided ideal of 7(V) suchthat I NV =0, R =
T(V)/I,m:T(V) — R the canonical projection. Set

Gy ={ueXu¢ Z kz+1

u<zeX

Letu, v, w € X such that u = vw. Ifu € Gy, then v, w € G;. Hence every u € Gy
factorizes uniquely as a non-increasing product of Lyndon words in G;. Then the set
7(Gy) is a basis of R [60,77].

Assume next that / is a homogeneous Hopf ideal and set P = {1}, S; :=G;NL
and ii;: S; — N>o U {oo} given by

hiy(u) :==min{t e N:u' e Z kz + 1

u<zeX

Let By := B (P,n([Sr]e), <, hy), see the beginning of this subsection. The next
fundamental result is due to Kharchenko.

Theorem 2.6 [60] If I is a homogeneous Hopf ideal, then Bj is a PBW-basis of
T(V)/I.

That is, we get a PBW-basis whose PBW-generators are the images of the hyper-
letters corresponding to Lyndon words that are in G;.

The finiteness of the height in the PBW-basis of Theorem 2.6 is controlled by the
matrix q:
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Remark 2.7 [61, Theorem 2.3] Let v € Sy such that i;(v) < oo, degv = «. Then
Jaa € Goo and i (v) = ord gyq-

By Remark 2.7, it seems convenient to consider PBW-basis B(P, S, <, h) of Bq
with the following constraints:

Definition 2.8 A PBW-basis is good if P = {1}, the elements of S are /.
homogeneous and 4 (v) = ord guo forv € S, degv = a.

Example 2.9 1f dim Bq < oo, then the PBW-basis B 7, of By as in Theorem 2.6 is
good. Indeed, h 7, (v) < oo for all v € Sz,. However, there are many examples of
v € Sy7,,degv = a with qog € Goo, With h 7, (v) =

For instance, take 6 = 2. Set for simplicity y, = (ad. x1)"x2, n € N. Assume that
there exists k € N such that o« = ka1 + oy is a root; particularly, y; # 0. Notice that
9 (yk) = by x¥, where by, = 1‘[’;;(1)(1 — q¥,q12). hence ()}, bi # 0. We claim that

0> =0inBy & Y41 =0, Qoo =—1.
Indeed, (yx)? = 0iff 3 (y?) = 0 = d2(y?); but  holds always. Then
32(y;3) = be(yxt + g5 g2 xF i)

(2 13) k(k— k—
br | (1 4+ gaa) )’kxl + Z < ) 41]( ])qlz ‘]21‘]22 Yk+jX1 -
j=1 q11

and thisis 0iff g4 = —1and yz11 = O (the lastimplies y;y ; = Oforall j € N). Thus,
if qoe = —1 but yg+1 # 0O, then y; has infinite height by Remark 2.7. Concretely,

the matrix q with Dynkin diagram o
example by k = 1.

o~ , where g # —1, gives the desired

Let us illustrate the strength of Theorem 2.6 in the following example.

Example 2.10 Letq € G\, N > 1,q12 € k* and q = (
Then a PBW-basis of By is

71q 1 qlz),so thatd = 2.
q9 4912 4

B=[aipaiio e <N j=212.1)

Here we use the notation (2.10).

Let us outline the proof of this statement.

e The quantum Serre relations x112 = 0, x221 = 0 hold in By. This can be checked
using derivations, see Proposition 1.2(f). Alternatively, apply [19, Appendix].

e The power relations x{v = 0, xév =0, xf\; = 0 hold in By. The first two fol-
low directly from the quantum bilinear formula, and the third from the quantum
Serre relations using derivations. By Remark 2.7, we conclude that & Tq (x1) =
hg,(x12) = hg,(x2) = N
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o The set B generates the algebra By, or more generally any R where the quantum
Serre and the power relations hold. This follows because the subspace spanned by
B is a left ideal.

e Theelement xjxy € qu = qu N L.Now x12 = [x1x2].; hence B, being a subset
of B, is linearly independent by Theorem 2.6. Alternatively, one can check the
linear independence of B by successive applications of derivations. Together with
the previous claim, this implies the statement.

Remark 2.11 The results of the theory sketched in this Subsection depend heavily on
the numeration of the starting set X, that is on a fixed total order of X. Changing the
numeration gives rise to different Lyndon words and so on. The outputs are equivalent
but not equal.

2.4 The roots of a Nichols algebra

Let (V, c) be a braided vector space of diagonal type attached to a matrix q as in
Sect. 2.1. Now that we have the PBW-basis By of B, given by Theorem 2.6, whose
PBW-generators (i.e. the elements of S.7, ) are Z!'-homogeneous, we reverse the rea-
soning outlined at the beginning of the previous Subsection and define following [44]
the positive roots of By as the degrees of the PBW-generators, and the roots as plus or
minus the positive ones; i.e.

AT = (degu)yesz,» AT =AU-A%. (2.16)

In principle, there might be several u € Sz, with the same deg. It is natural to
define the multiplicity of 8 € Z! as

mult f = multq B = [{u € Sz,: degu = B}|.
Definition 2.12 [46] The matrix q (or the braided vector space (V, c¢), or the Nichols
algebra By) is arithmetic if |A]| < oo.

For instance, if dim By < oo, then (V, ¢) is arithmetic. If B is arithmetic, then all
roots are real, i.e. conjugated to simple roots by the Weyl groupoid; see the discussion
in Sect. 2.7.3 below. Using this, one can prove:

Remark 2.13 Assume that By is arithmetic.

e The heights of the generators in Sz, satisfy (2.14).
° Ai does not depend on the PBW-basis: if B = B(P, S, <, h) is any PBW-basis
with P = {1} satisfying (2.14), then A? = (degu),cs. See [2].

We next explain the recursive procedure to describe the hyperletters.

Remark 2.14 Assume that q is arithmetic. Then every root has multiplicity one [35], so
we can label the Lyndon words with Aj_; let /g be the Lyndon word of degree 8 Aj_.
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The Lyndon words /g’s are computed recursively [23, Corollary 3.17]: [, = x;, and

for B # o,
lg = max {lsl5,:81,80 € AL, 81 +8 =B, I5, <Is,}. (2.17)
Let xg be the hyperletter corresponding to the Lyndon word /g, B € Ai. Then

Xy = Xi, iel,
. . . . (2.18)
xg = [x5,, xs,1e,  if lg = I5,1s, is the Shirshov decomposition.

This gives explicit formulas for the PBW-generators of the PBW-basis B, given by
Theorem 2.6.

Braidings of Cartan type

To explain the importance of the roots as defined in (2.16), we discuss the class of
braidings of Cartan type, closely related with quantum groups.

Definition 2.15 [19] The matrix q (or V, or By) is of Cartan type if there exists a
GCM A = (a;j) such that

aijqji = q; . Vi, jel (2.19)
Assume that this is the case. We fix a choice of A by
—N; <a;jj <0, Vj#ielwhenN;:=ordg;; € (1,00). (2.20)

This was the first class of Nichols algebras to be studied in depth.
Theorem 2.16 [44] See also [19]. Let q be of Cartan type with GCM A indecompos-
able and normalized by (2.20). Then the following are equivalent:

(1) The Nichols algebra By is arithmetic.
(2) The GCM A is of finite type.

Consequently, the following are equivalent:

(1) The Nichols algebra By has finite dimension.
(2) (a) The GCM A is of finite type.
(b) N; € (1,00) foralli € 1.

Remark 2.17 1f q is of Cartan type as in Theorem 2.16, (2a) holds but N; = oo (for
one or equivalently for any i), then GK-dim By = |Aﬁ|.

Remark 2.18 Let q be as in Theorem 2.16. Then Aj_ D A’j_’re.

(a) [19,44]If A is of finite type, then A = A%,

(b) Assume that A is of affine type. If N; = oo for some (or all) i, then Aj_ = Aﬁ
[28,37]. When N; < oo for all i, the last equality does not hold.
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(c) In any case, Ai - Aﬁ and thus the function
n— g, :={peAl:|Bl=n}l, neN,

has polynomial growth. Here || = ), n;, if B = ), njc;.
(d) If A is of indefinite type, then we do not know if (¢,,), <N has polynomial growth.

We discuss an example for the last claim in (b). Let ¢ € G/, N > 2, and q with
-2
Dynkin diagram o o% ; this is of affine Cartan type Agl), see (3.3). The height
of the (imaginary) root « = a1 + o2 is infinite since g = 1. Now the only possible
root vector of degree 2« is y = [x1, [x12, x2]c]c. Since

(@12 — D(q11 + D(g22 + D(q11g12 — D(G12g22 — 1) # 0,

we conclude from [6] that y is a root vector if and only if q”((ﬂ'z)zqu # —1, iff
N #4.S0if ¢? = —1, then 2o ¢ AT

Before explaining how to describe the positive roots for an arbitrary ¢ we need the
Drinfeld double of the bosonization of By.

2.5 The double of a Nichols algebra

The natural construction of the Drinfeld double of the bosonization of a Nichols
algebra by an appropriate Hopf algebra was considered by many authors. For a smooth
exposition, we start by a general construction as in [17]. Let q = (g;;);, je1 be a matrix
of elements in k™ such that g;; # 1foralli € L. Let G be an abelian group. A reduced
YD-datum is a collection Dyeg = (L, Ki, ;)ic1 where K;, L € G, 0; € G, i €1,
such that

qi; = 0 (Ki) = 9:(L}) foralli, j 1, (2.21)
KL #1 foralli e L. (2.22)

Let us fix a reduced YD-datum as above and define

V = @iaky € XyD, with basis x; € V'.i € 1L
1

. . 2
W = ®;erky; € ESYD, with basis y; € W," i €.

Let U(Dy.q) be the quotient of T(V & W)#kG by the ideal generated by the
relations of the Nichols algebras 7 (V) and [J (W), together with

Xiyj — ﬁfl(Ki)iji —6;j(KiLi — 1), i,jel
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Thus U(Dyeq) is a Hopf algebra quotient of T(V & W)#KkG, with coproduct
determined by A(g) =g ® g, g € G,

AX)=xQ1+K;®x;, Ay)=yi®1+L;®y;, iel
Our exclusive interest is in the examples of the following shape.
Example 2.19 Let I' be an abelian group. A realization of q over I' is a pair (g, x)
of families g = (gi)ier in I', x = (Xi)ier in I', such that ¢;; = Xi(gj;l for all

i, j € L. Any realization gives rise to a reduced datum D;.4 over G = I' x I', where
I'=(xi:i el) — I', by

Ki=gi, Li=xi, Ui=8) i€l
To stress the analogy with quantum groups, we set as in [17,47,52],
Ei=xi, Fi=yix " inU(Dyeq)fori=12. (2.23)

LetU(Dyeq)T be the subalgebra of U (D,.q) generated by the F;’s, respectively the
E i ’s.

Example 2.20 We shall consider the following particular instance of Example 2.19,
where («;);¢r is the canonical basis of 7t

r=72 g=w, xi:Z'-=1¥* xj@)=qj, icl
In this context, we set Uy := U(Dyeq).

In the following statement, quasi-triangular has to be understood in a formal sense,
as the R-matrix would belong to an appropriate completion.

Theorem 2.21 Let D, o4 be a reduced datum as in Example 2.19. Then U(Dyeq) is a
quasi-triangular Hopf algebra.

Proof (Sketch). We argue as in [17, Theorem 3.7]. Let H = B(V)#k[ and U =

B (W)#ka’. There is a non-degenerate skew-Hopf bilinear form (|): H @ U — k
given by

(ily;) =8, Wil®) =0, (gly) =0, (g9 =0v(). gelvel. ijel
Then U(Dyeg) ~ (U ® H)y, where o : (U ® H) @ (U ® H) — k is the 2-cocycle

given by o (f @ h, f' @ h') = e(f)(h|f)e(l') for f, f/ € H* and h,h' € H.
Therefore U (D,.q) is the Drinfeld double of H. O
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2.6 The Weyl groupoid of a Nichols algebra

The proofs of the claims on braidings of Cartan type, see Sect. 2.4, rely on the action
of the braid group described by Lusztig [65,66], as generalized in [44]. It turns out
that this action has a subtle extension to the context of Nichols algebras of diagonal,
but not necessarily Cartan, type. As we shall see, the adequate language to express
this extension is that of groupoids acting on bundles of sets.

Recall that (V, ¢) and q are as in Sect. 2.1.

Definition 2.22 The matrix q (or V, or By) is admissible if for all i # j in I, the
set {n € No:(n+ 1)y, (1 — 6]1-"1-6]1,/6],/[) = O} is non-empty. If this happens, then we
consider the matrix C9 = (cf'j) e 71 given by cl.qi =2 and

c?j = —min {n € No: (n + Dy, (1 —qliqijqji) =0}, i#j. (2.24)

It is easy to see that C9 is a GCM. If q is of Cartan type with GCM A, then C% = A.
Thus the matrix C9 suggests an approximation to Cartan type.

The GCM CY induces reflections siq € GL(Z%), namely

siq(otj) =aj —C?j()(l‘, i,jel

If q is of Cartan type, then these reflections generate the Weyl group W and lift to an
action of the braid group (corresponding to W) on U, (g) [65,66]. In general this is
not quite true, but a weaker claim holds. Namely, fori € I, let p; (q) be defined by

pi (@) jk = q (s @), s (@), Jj.kel (2.25)
The new braiding matrix p; (q) might be different from g, but nevertheless:

Theorem 2.23 [44] The reflection sl.q lifts to an isomorphism of algebras T;: Uy —
Upi (q)-

Recall U from Example 2.20. See [49] for a generalization and categorical expla-
nation of this result.

Assume now that GK-dim B; < oo, for instance that dim B; < oo. Then q is
admissible by [76]; since GK-dim B, (q) < oo by Theorem 2.23, p; (¢) is also admis-
sible. It can be shown without complications that

cf =0 forall i, j el (2.26)

The fact that p; (q) might be different from ¢ is dealt with by considering

Xq = {pi .. piroiy @, keNo, i,....ix €I} (2.27)

Thus all p € X are admissible. The set Xy comes equipped with maps p;: Xy — X
given by (2.25) for each p € &;. It is easy to see that ,oi2 =id.
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Thus each p € & gives rise to a Nichols algebra with finite GK-dimension (or
finite dimension, according to the assumption). The generalized root system of the
Nichols algebra By is the collection of sets

(AP)pex,- (2.28)
We also have reflections sl.p fori € Tand p € X; they satisfy
sF(AP) = AP, (2.29)

Altogether, the reflections s,P ,i € Tand p € A, generate the so called Weyl

groupoid W, as a subgroupoid of X;; x GL(7?) x Xy. By (2.26) and (2.29), the Weyl
groupoid W acts on (CP),¢ x, and on the generalized root system (AP)pe X, that
we think of as bundles of matrices and sets over Xy, respectively. These actions are
crucial for the study of Nichols algebras of diagonal type.

2.7 The axiomatics

The ideas outlined in Sect. 2.6 fit into an axiomatic framework designed in [52] for
this purpose. We overview now this approach following the conventions in [3]. We
denote by Sy the group of symmetries of a set X

2.7.1 Basic data

All the combinatorial structures in this context are sorts of bundles over a basis with
prescribed changes, that we formally call a basic datum. This is a pair (X, p), where
I # @ is a finite set, X # @ is aset and p: 1 — Sy satisfies pl.2 =id foralli € I.
We assume safely that [ = Iy, for some 6 € N. We say that the datum has base X’ and
size I (or 6).

We associate to a basic datum (&, p) the quiver

Q, = {0 == (x,i, pi(x)):i €, x € X}

over X (i.e. with set of points &), source s(0;') = p;(x) and target ¢(0]") = x,
x € X. The diagram of (X, p) is the graph with points X and one arrow between
x and y decorated with the labels i for each pair (x, i, p; (x)), (pi(x), i, x) such that
x # pi(x) = y. Thus we omit the loops, that can be deduced from the diagram and 6.
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Here is an example with 6 = 4:

3 C o 3 4 s o (2.30)
1,2
2 2 1 1 4 3
! ! S : b
)N £2 ()
° ° ° 2

We say that (X, p) is connected when @, is connected. Also, we write x ~ y if
x,y are in the same connected component of Q.

2.7.2 Coxeter groupoids

we assume that the reader has some familiarity with the theory of groupoids. For
example, if X' is a set and G is a group, then X x G x X is a groupoid with the
multiplication defined by

(x, g, V. h,2)=(x,gh,2), x,y,2€X, g, heq,

while (x, g, y)(y', h, z) is not defined if y # y’. Recall that

o A Coxeter matrix of size I is a symmetric matrix m = (m;;); jer with entries in
Z>o U {400} such that m;; = 1 and m;; > 2, foralli # j € L.

e The forgetful functor from the category of groupoids over &’ to that of quivers over
X admits a left adjoint; i.e. every quiver Q over X determines a free groupoid F (Q)
over X, whose construction is pretty much the same as the construction of the free
group.

e Consequently we may speak of the groupoid G presented by a quiver Q with
relations N (which has to be a set of loops), namely G = F(Q)/N, where N is
the normal subgroup bundle of F(Q) generated by N.

We fix a basic datum (X, p) of size I. We denote in the free groupoid F(Q,), or
any quotient thereof,

piy (x) Pip_q iy (X)
Uz')iGiZ"'Uir = l')i l-zll ...O'i[t ! ! (231)
i.e., the implicit superscripts are the only possible allowing compositions.

Definition 2.24 A Coxeter datum for (X, p) is a bundle of Coxeter matrices M =
(mx)xeX, m* = (Wlfj)i,jgﬂ, such that

s((o o))"y = x, i,jel, xed, (2.32)
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m;‘j = mgf(x) forallx e X, i,j el (2.33)

Alternatively, we say that (X, p, M) is a Coxeter datum. The Coxeter groupoid VW =
W(X, p, M) is the groupoid generated by Q, with relations
(070))"i =idy, i,jel, xed. (2.34)
The requirement (2.32) just says that (2.34) makes sense.

Example 2.25 A Coxeter groupoid over a basic datum of size one is just a Coxeter
group.

It is equivalent to give a groupoid over a basis X or an equivalence relation on
X together with one group for each equivalence class. Coxeter groupoids are more
intricate than equivalence relations with one Coxeter group for each class. We now
describe all Coxeter groupoids over a basis of 2 elements.

Example 2.26 [3] Let (X, p) be the basic datum of size § with X = {x, y} and £
loops at each point, that we label as follows:

£+1,...,0
e e,
x y

Letm"* = (m;;); jer and m” = (n;;); je1 be Coxeter matrices such that

mip, nip € 27, iely, helpyrp, what is tantamount to (2.32),
mij = ngj, kelptr0, jel, what is tantamount to (2.33).

By symmetry, m jx = nji, fork € Iy419, j € L. Set

mip nip
Cih = —— =

—,iel, hel .
> 5 o LEN £4+1,6

The associated Coxeter groupoid is isomorphic to X x H x X', where H is the group
presented by generators

si, ti, 1€ly, up, helgip, h <0

with defining relations

(sis))" = e = (1;t;)"7, i,j €l
(sitin)™" =e, iely, helpgg;
uzkhk =e, h,k € ]Ig.,.],@, h <k.

Here we denote

-1 —1 .
Uhk = UpUp41 -« Uk—1 = Uy, tin = ”hf’ti”he , iely, h<ke ]I“_]’@.
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In particular, we see that the isotropy groups of a Coxeter groupoid are not necessarily
Coxeter groups.

In a Coxeter groupoid, we may speak of the length and a reduced expression of any
element, as for Coxeter groups.

2.7.3 Generalized root systems

We are now ready for the main definition of this Subsection (that is not the same as the
one considered in [79]). Let R = (X, p) be a connected basic datum of size I = Tj.
Recall that {; };<1 denotes the canonical basis of Z.

Definition 2.27 [52] A generalized root system for (X, p) (abbreviated GRS) is a pair
(C, A), where
e C = (C*),cx is abundle of generalized Cartan matrices C* = (C;Ci),',je]l, cf. (1.1),

satisfying

_ pi(x) P
cl?‘j = ¢} forall x e X, i,j el (2.35)

As usual, these GCM give rise to reflections s; € GL(Z") by

sf(ot,-):otj—cfjozi, jel, iel,xeX. (2.36)

By (2.35), 57 is the inverse of s/ @
e A = (AY),cy is abundle of subsets A* C Z! (we call this a bundle of root sets)

such that

A =AY U AT, L= +(A NN C £NG; (2.37)

AN ZO[,' = {:l:O(i}; (238)
sT(AY) = AP, cf. (2.36); (2.39)
(Pipj)mfj (x) = (), mj; = A" N (Noai + Noa)l, (2.40)

forallx e X,i #jel

We call Ai, respectively A*, the set of positive, respectively negative, roots.

Definition 2.28 Let R = (C, A) be a generalized root system.
o The Weyl groupoid W is the subgroupoid of X x GL(Z?) x X generated by all
G =(x, 57, pi(x),iel,x e X.
o If x € X, then we set m* = (mfj)i,jeﬂ, where m;; is defined as in (2.40). By the
axioms above, M = (m¥),cy is a Coxeter datum for (X, p).
e letx,ye X.Ifwe W(x,y), then w(A¥) = AY, by (2.39). Thus the sets of real
and imaginary roots at x are

(A = | J twe):i e, w e Wy, )}, (AM)* = A" — (A"
yeX
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In analogy with Cartan matrices of finite type, finite GRS are characterized by all
roots being real. Let R = (C, A) be a generalized root system. We say that R is finite
if |W| < o0.

Theorem 2.29 (a) [35, 2.11] R is finite <= |A*| < 00,Vx € X <—
IJx e X:|AF| <00 = [(A™)*]| < 00,Vx € X.

(b) [52, Corollary 5] Assume that R is finite. Pick x € X. Then there is a unique
wy € W ending at x of maximal length ¢; all reduced expressions of wy have
length €. If y € X, then a)(‘; has length £.

(c) [35, Prop. 2.12] Assume that R is finite. Pick x € X and fix a reduced expression
wy = 0;, ... 0. Then

AL ={Bj:j €L}

where B 1= sixl Ce S (ot,-].) € A*, j € Iy. Hence, all roots are real.

(d) [52] There is an epimorphism of groupoids W(X, p, M) — W(X, p,C). If R
is finite, then this is an isomorphism.

(e) [50, Theorem 4.2] If R is finite, then there is x € X such that C* is of finite type.

An outcome of the Theorem is that a finite GRS is determined by the bundle C of
generalized Cartan matrices. It would be coherent to call arithmetic root system to a
finite GRS.

As expected, Nichols algebras of diagonal type with finite dimension or GK-
dimension give rise to generalized root systems.

Example 2.30 Let (V,c) and q be as in Sect. 2.1. Assume that GK-dim B; < oo.
Let (Xy, p) be as in (2.27), let C = (Cp)pe X, be the bundle of generalized Cartan
matrices defined by (2.24), and let A = (Ap)]ge;(Cl be as in (2.28). Then R = (C, A)
is a generalized root system for (X, p).

We summarize the relation between generalized root systems and Nichols algebras:

Remark 2.31 (a) The classification of the arithmetic Nichols algebras of diagonal
type (characteristic 0) was achieved in [46], as said.

(b) Later, the classification of the finite generalized root systems was obtained in
[36]. There are finite GRS that do not arise from arithmetic Nichols algebras; at
least one of them arises from a finite dimensional Nichols algebras of diagonal
type in positive characteristic.

(c) Let R be afinite GRS arising from a Nichols algebra B of diagonal type. We say
that Bq is an incarnation of R; incarnations are by no means unique, see Remark
3.1

(d) More generally, let B be the Nichols algebra of a semisimple Yetter—Drinfeld
module. If dim B < oo, then it gives rise to a finite GRS [48]. No explicit examples
are known, except diagonal type and the following: the classification of the finite
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dimensional Nichols algebras over finite groups, semisimple but neither simple
nor of diagonal type (arbitrary characteristic) was achieved in [50]. It turns out
that all GRS appearing here arise also in diagonal type; explicitly they are standard
with |[X| =1 oftypes Ag,Bg,0 >2,Cyp,0 >3,Dy,0 >4,Ep,0 € H6,8, Fy, Go;
the root systems of types Br(2), Br(3), and Brj(2, 3).

(e) When GK-dim B; < oo, it is conjectured that the associated GRS is finite [5].
There is some evidence: the conjecture is true for dim V = 2 or for affine Cartan
type. We observe that apparently the imaginary roots of a GRS are not determined
by the real ones, contrarily to what happens with generalized Cartan matrices. See
Sect. 3.5 for the list of Nichols algebras with arithmetic root systems and positive
GK-dim.

The following Proposition will be used when discussing incarnations.

Proposition 2.7.1 Let (X, p) be a basic datum and let R = (C, A) and R’ =
R(C, A") be two generalized root systems for (X, p) with the same bundle C. Then
the bundles A™ = ((A™)%)ex and A = ((A™)) ex are equal. In particular R
is finite if and only if R is finite; if this happens, then R = R/.

Proof Both R and R’ have the same Weyl groupoid because this is defined by C,
implying the first claim. Now the second claim follows from the first and Theorem
2.29. O

2.8 The Weyl groupoid of a (modular) Lie (super)algebra

The generalized root systems appear in other settings. Important for this monograph
is that of contragredient Lie superalgebras. All results in this subsection are from [3],
unless explicitly quoted otherwise.

Letd e N, I =1y. We fix

a field I of characteristic £,

A = (a;;) e P!

p = (pi) € G}, when ¢ # 2,

a vector space f of dimension 26 — rank A, with a basis (4;);cly a4
a linearly independent family (&;);<r in h* such that

Ei(hi) =a;j, i,jel

We call p the parity vector; the additive version is |i| = FT’” € Z/2.

From these data, we define a Lie superalgebra (a Lie algebra whenever p = 1 :=
(1,..., 1)) in the usual way. First we define the Lie superalgebra § := g(A, p) by
generators e;, f;, i € I, and b, subject to the relations:

(h, K1 =0, [h el =&WMe, [h, fil=—&M)fi, lei fil=38ijhi, (241)

foralli, j €I, h, k' € b, with parity given by
leil =1fil=1il, ie€l, |h =0, heh.
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This Lie superalgebra has a triangular decomposition g = 1, @ b @ n_ that arises
from the Z-grading § = @z gr determined by ¢; € §1, fi € §-1, b = §o. The
contragredient Lie superalgebra associated to A, p is

9(A,p) :=4(A,p)/r

where t = t4 @ t_ is the maximal Z-homogeneous ideal intersecting b trivially. We
set g := g(A, p), and identify e;, f;, h;, h with their images in g. Clearly g inherits
the grading of gand g = ny @ hdn_, where ny = 0y /ry. Asin [29,58], we assume
from now on that A satisfies

ajj =0ifand only ifa;; =0, forall j #i. (2.42)
By [29, Section 4.3] or [34, Remark 4.2], g is ZH-graded by

dege; = —deg fi = «;, degh=0, i€l hehb.

The roots, respectively the positive, or negative, roots, are the elements of

V(A,P) — {O{ c ZH —0: VP9 7é 0} s V:I: = V(A’p) N (:I:Ng) .

For instance, the simple roots are «; € VAP ;e 1. Then
Ap) _ v(A.p) (A,p) (A,p) _ (A,p)
viar — yiEP g yie s i - g,
We say that (A, p) is admissible if
ad f; is locally nilpotent in g = g(A, p) (2.43)

for all i € 1, cf. [80]. For instance, (A, p) is admissible when g(A, p) is finite-
dimensional, or £ > 0 [3].

If (A, p) is admissible, then we define CAP) = (cl?;.“’))l. jer € 2 by

AP _g AR iy {m € No: (ad fi)" 1 f; = 0} . ijel

il ij
Let s“4P € GL(ZY) be the involution given b
; given by

A, A, :
sl.( p)(ozj) = — cfj Po;, jel (2.44)

A.p
Leti € [;set pip = (P})jer. P; = pjp;” - In[3], we introduce a matrix p; A

and the pair p; (A, p) := (p;i A, pip).
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Theorem 2.32 Let A € FI¥I satisfying (2.42) and p € (Go)L. Assume that (A, p) is
admissible. Then there are Lie superalgebra isomorphisms

TP a(0iA, pip) = 8(A,p), i €L, 243
such that

A,
T (a(0i A, pip)p) = 8(A,P) am 5. B € NG, (2.46)

We consider the equivalence relation ~ in FI¥T x G% generated by

e (A,p) = (B, q) iff the rows of B are obtained from those of A multiplying by
non-zero scalars,
e (A,p) = (B, q) iff A is satisfies (2.42) and there exists i € I fulfilling (2.43) such
that p; (A, p) = (B. q).
We denote by X' 4-P) the equivalence class of (A, p) with respect to ~.
Definition 2.33 A pair (A, p) is regular if and only if every (B, q) € X'4P) is admis-

sible and satisfies (2.42). Evidently, all (B, q) € X 4P are regular too. Therefore there
are reflections 7; for all (B, q) € XAP andi el

If ¢ > 0, then ‘(A, p) regular’ says that all (B, q) € XAP) satisfy (2.42).
Let (A, p) be a regular pair. We set

Aif"p) = V(f’p) — {ka:a c V(f’p), keN k> 2}, (2.47)
cAP _ (]I, XAP (p)ie. (C(B’q))(B,q)eX(A’P)) (2.48)

Theorem 2.34 (CA-P), (A(B’q))(B,q)GXm,p)) is a generalized root system.
This is the point we wanted to reach:

Proposition 2.8.1 Let (A, p) as above, i.e. A € F*>*Uandp € GHZ. If A satisfies (2.42)
and dim g(A, p) is finite, then (A, p) is regular, thus it has a generalized root system.

Now the classification of the finite-dimensional contragredient Lie superalgebras
is known and consists of the following:

e If ¢ = 0 and p = 1, then this is the Killing—Cartan classification of simple Lie
algebras of types A, ..., G.

e If¢ = Oand p # 1, then this belongs the classification of simple Lie superalgebras
[57].

e If ¢ > 0 and p = 1, then the analogous of Lie algebras in characteristic 0, the
Brownalgebras bt(2; a), br(2), br(3) [29,31,81] for £ = 3, and the Kac—Weisfeiler
algebras w#£(3; a), wt(4; a) [29,59] for £ = 2.

e If ¢ > 0 and p # 1, then the analogous of Lie algebras in characteristic 0, the
Brown superalgebra btj(2; 3), the Elduque superalgebra el(5; 3), the Lie superal-
gebras g(1, 6), g(2,3), g(3, 3), g(4,3), 9(3, 6), 9(2,6), g(8, 3), g(4, 6), g(6, 6),
9(8, 6) [29,34,40,41] for £ = 3, and the Brown superalgebra btj(2; 5), the Elduque
superalgebra ¢l(5; 5) [29] for £ = 5.
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2.9 Classification

Recall that (V, ¢) is a finite-dimensional braided vector space of diagonal type with
braiding matrix q as in Sect. 2.1. In the celebrated article [46], the classification of the
Nichols algebras of diagonal type with arithmetic root system was presented in the
form of several tables.

Roughly, the method of the proof consists in deciding when the Weyl groupoid is
finite, iterating the construction (2.25). The procedure goes recursively on 6; it could
be shortened using the reduction given by Theorem 2.29(e), see also [51].

We propose an alternative organization of the classification. Assume that q is arith-
metic, e.g. that dim By < oo, and let R be its GRS.

o If the bundles of matrices and of root sets are constant, then we say that (V, c) is
of standard type; braided vector spaces of Cartan type fit here.

e If R is isomorphic to the GRS of a Lie superalgebra in Kac’s list above, then we
say that (V, ¢) is of super type [10].

e If R isisomorphic to the GRS of a contragredient Lie superalgebra in characteristic
£ > 0, as above, then we say that (V, c) is of modular type.

Most of the g with the assumption above fall into one of these three classes, showing
the deep relation between Nichols algebras and Lie theory. From the list of [46], there
are still 12 examples whose GRS could not be identified in Lie theory; we call them
UFO’s. Actually, they come from 11 different GRS, as one of them incarnates in two
distinct Nichols algebras.

2.10 The relations of a Nichols algebra and convex orders
2.10.1 Convex orders

We start by the concept of convex order in an arithmetic root system. Let A be the root
system of a finite-dimensional simple Lie algebra, W its Weyl group and wy € W the
longest element. Then a total order < on A is convex if

a,pedAy, a<Panda+fecAL, = oaoa<a+p<8p. (2.49)

A priori, it is not evident why convex orders do exist, but this result gives them all:

Theorem 2.35 [72] There is a bijective correspondence between the set of convex
orders in Ay and the set of reduced decompositions of wy.

Let now R = (C, A) be an arithmetic root system over a basic datum (X, p). Fix
x € X. Following [23], we say that total order < on A% is convex if (2.49) holds for
all , B € A . Recall wp), Theorem 2.29(b).

Theorem 2.36 [23] There is a bijective correspondence between the set of convex
orders in A and the set of reduced decompositions of wj.

The correspondence is easy to describe: given a reduced decomposition wfy =
oif ...0j,, the convex total order in A} is induced from the numeration given in
Theorem 2.29(c).
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2.10.2 Defining relations

We keep the notation (V, ¢), g, etc. from Sect. 2.1 and we assume that q is arithmetic.
The total order in the set of simple roots given by the numeration by I induces a total
order in Ai (the restriction of the lexicographic order) as explained in Sect. 2.3. This
total order turns out to be convex (but there are more convex orders than these when
0 > 2). Let (Br)ker, be the numeration of Ai induced by this order. For every k € I,
let xg, be the corresponding root vector as in Remark 2.14.

Leti < j € Iy, njq1,...,nj—1 € Ny. Because the total order is convex, we

conclude that there exist c,S";jl)WnH € k such that

— ()] nj—1 nj41
[xﬁi,xﬁj]c = Z Cni'ttoemy Xy e Xp (2.50)
Nig1s.0j-1€No
()]

The scalars ¢ .n;_ can be computed explicitly [23, Lemma 4.5]. Notice that if

Nit1s-
> nkPr # Bi + Bj, then c,(fl.’jl) ,,,,, nj =0, since By is N(H)-graded.
Let B € Al; we set Ng = ord qgg. If Ny is finite, then
xy" =0, 2.51)

Theorem 2.37 [23, 4.9] The relations (2.50),i < j € 1y, and (2.51), B € Ai with
Ny finite, generate the ideal Jq defining the Nichols algebra By.

The proof of this Theorem does not appeal to the classification in [46], but to the
theory of finite GRS [44,52] and the study of coideal subalgebras in [48]. Starting
from Theorem 2.37, the defining relations of B for the various q in the list in [46] was
given explicitly in [24, Theorem 3.1]. The approach in loc. cit. does not follow the list
but the possible local subdiagrams, i.e. of rank 2, 3, 4, up to insuring the existence of
the Lusztig isomorphisms 7;, analogous to those in Theorem 2.23. The final argument
uses that the bundle of Cartan matrices determines the GRS.

2.11 The Lie algebra of a finite-dimensional Nichols algebra

A finite-dimensional Nichols algebra B of diagonal type gives rise to some remarkable
objects: its distinguished pre-Nichols algebra B, [24,26], its Lusztig algebra L4 [7]
and its associated Lie algebra g [8]. If q is of Cartan type (with entries of odd order), then
By is isomorphic to the positive part of the quantum group defined by De Concini and
Procesi [38], while L is the positive part of the algebra of divided powers introduced
by Lusztig [66,67]. We expect that these algebras By and £, would give rise to
interesting representation theories. We discuss succinctly these three notions.

2.11.1 The distinguished pre-Nichols algebra

We start with the concept of Cartan roots [26] and then discuss the definition of gq.
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i)
First, i € Iis a Cartan vertex of qif g;jq;; = qicl.”, for all j € 1. Then the set of
Cartan roots of q is

01 = {sfis,-2 s (o) € A9%:i e Tis a Cartan vertex of Pi - -+ Pis Piy (q)} .

Thus 0% = 01 U 07, where O = 09 n Al
The distinguished pre-Nichols algebra is defined in terms of the presentation of 7y
evoked above. To explain this, we need the notation:

q
aeA].

R Ny =ord gy ifa ¢ OF,
oo ifo € 0F,

Let Zy C Jq be the ideal of T' (V') generated by all the relations in [24, Theorem
3.1], but

e excluding the power root vectors X e Oﬁ'r,
q
e adding the quantum Serre relations (ad, xi)l_ci-i x; for those i # j such that
q
Ci-
qiij =dijqji = qii-
Definition 2.38 [24] The distinguished pre-Nichols algebra gq is the quotient
T(V)/1,.

This pre-Nichols algebra is useful for the computation of the liftings; it should also
be present in the classification of pointed Hopf algebras with finite GK-dim. See [26]
for the basic properties of .

2.11.2 The Lusztig algebra and the associated Lie algebra

For an easy exposition, we suppose that ¢ is symmetric, and by technical reasons, that
Ng _ q
9o =1, Vo, p €O (2.52)

Definition 2.39 The Lusztig algebra Lq of (V, c) is the graded dual of the distin-
guished pre-Nichols algebra By of (V*, q); thus, By € Ly.

To describe the associated Lie algebra, we begin by considering the subalgebra Z,
of gq generated by xfgvﬁ ,B e Oi. Then Z is a commutative normal Hopf subalgebra
of gq [26]. In turn, the graded dual Bq of Z4; is a cocommutative Hopf algebra, iso-

morphic to the enveloping algebra I/ (ng) of a Lie algebra ng. Then L is an extension
of braided Hopf algebras:
Bq (N [,q — Bq'

Theorem 2.40 [8,9] The Lie algebra n is either 0 or else isomorphic to the positive
part of a semisimple Lie algebra gq.
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The proof we dispose of this Theorem is by computation case-by-case. If g is of
Cartan type, then gq corresponds to the same Cartan matrix, except in even order and
type B or C, in which case is of type C or B. If q is of super type, with corresponding
Lie superalgebra g, then gq is isomorphic to the even part go. Assume that q is of
modular type. Then the Theorem shows, in particular, that the modular Lie algebras
or superalgebras listed above give rise to Lie algebras in characteristic 0. However,
the latter do not control completely the behaviour of the former.

Remark 2.41 There is a bijection from the set (’)1 to the set of positive roots of gg.
Thus O bears a structure of root system, albeit we do not dispose of a direct proof of
this fact.

2.12 The degree of the integral

Again, (V, ¢) and q are as in Sect. 2.1. We assume that dim Bq < 00. We introduce
an element of the lattice Z! which is a relative of the semi-sum of the positive roots in
the theory of semisimple Lie algebras. Let Ng = ord(gg) = h(xg) for B € Ai. Let

A=Y (Ng—1BeZ. (2.53)

peal

Suppose that q is of Cartan type. If ord g;; is relatively prime to the entries of the
Cartan matrix A, then Ng = N is constant and 7 = (N — 1) ZﬂeAi B.

Since By = EB,,EOBQ’ is finite-dimensional, there exists d € N such that Bg %0
and By = 0 for n > d. Then By is unimodular with Bg equal to the space of left and

right integrals, dim B = 1 and dim B} = dim By  if j € Io 4. See [15] for details.
We set top = d. Then

7= deg By (2.54)
Let now I' be a finite abelian group and (g, x) a realization of g, cf. Sect. 2.5, with

g = (gi)iel, X) = (Xi)ier Then we have morphisms of groups 7Z' > TandZ! - T
given by

Br— g, 8u =8 Br— Xg» Xy = Xi» i€L

We refer to [42, §8.11] for the basics of ribbon Hopf algebras. Here is an application
of 4.

Proposition 2.42 The distinguished group-likes of H = B(V)#KkI" are

1

Uy =%, and Iy = g,
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The Drinfeld double (D(H), R) is ribbon if and only if there exist © € T, :x € T such
that 6> = Iy = gq, %° = Uy = x; ' and

q;' = xi©x (g, foralliel (2.55)

Proof The first claim follows from [32, 4.8, 4.10] and the discussion above. The
second claim is a consequence of [62, Theorem 3]. O

We next discuss how the preceding construction behaves under the action of the
Weyl groupoid. Let us fixi € [ and setq’ = p;q = (q}k)j,keﬂ. First we notice that the

degree of the integral corresponding to q’ is

A = s} 4+ 2(N; — Da;. (2.56)
Indeed,
A=Y (Ng=DB= > (Nyp — Ds](¥) + Vi — Dey
pea? yeAl —{a}
= Y Ny = Ds?) + (N = Day =57 (7) + 2(N;i — Dy

yeAl —{o;)

Now g’ = (g;.)jd, x' = (X;')je]l gives a realization of q’ where

—c} —f} :
8j=28i8& =8, Xj=XiXi = =Xd@,) JEL (2.57)

Corollary 2.43 The distinguished group-likes of H' = By#kI are
Uy = ‘IHXl.Z(N'_l) and Iy = I[Hgiz(l_Ni).

If (D(H), R) is ribbon, then (D(H"), R’) is also ribbon.

Proof The first claim follows by a direct computation from (2.56). Let

o~

1-N; N;i—1
0 = bg; el, o = oy, eTl.
Clearly, (6)? = ;, (#)> = Y};. We check that (2.55) holds. Let j € I. Since 6,
ac satisfy (2.55) and ql.ll\.”' =1, we have
"6 n=1( 1\ _ _C?j 1-N; -1 _1-N; _C?j
X0 ()™ (&) = xjx; (5g,- w X 88
_ _ =i 2T Ni=1) 1 _n
= 1O @) (u@a @) VT ag

a5 —cf
_ =1 Cij 2 1=N; 1=N; _ —1_~Cj 1-N; 1-N;
=45 9 i i 95 =959 i i
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Now
| —cl
o If j =i, theng;; = gi;,andq}; q;; "
q
. . Cij
o If j #iandq;’ = gijqji, then ¢;; = q;;, and

1-N; 1=Ni _ —1 -2 2-2N; _ 1
dij ;i =i 9i i =4dii -

4 a9 .
¢l —Cjj cij(l—N,)_ 1

—1 _~%jj 1-N; 1-N; _ -1
9j i ;45 =45 G i =4jj -

q.
o If j #iandq; # qijqji. then ¢, = 1 — N, s0

2
B IV T R () N B B A S/ A W
q]'j 4q;i q,‘j q]'i —q]'j q;i C]ij q]'i = XjX; 8j8; =\4jj) -

Thus X}(ﬂ)(ow/)_l(g}) = (q}j)_1 for all j € I; Proposition 2.42 applies. O

Part II. Arithmetic root systems: Cartan, super, standard

3 Outline
3.1 Notation

In what follows g € k* — {1}, N := ord ¢ € [2, 0o]. Recall that («;);c1 denotes the
canonical basis of ZI.

The matrices q considered here belong to the classification list in [46]; they may
form part of an infinite series—or not. In the second case, we often use i to denote the
root «;, and more generally

i1ip ... i denotes o, + o, + ... 0t € ZH;

also i ... i)* denotes hyay, + hoai, 4 - -y, € ZF 3.1)

The implicit numeration of any generalized Dynkin diagram is from the left to the
right and from bottom to top; otherwise, the numeration appears below the vertices.

Basic data are described either explicitly or by the corresponding diagram as in p.
34.

If anumbered display contains several equalities (or diagrams), they will be referred
to with roman letters from left to right and from top to bottom; e.g., (4.5 c) below means
Xhy =0,k <1

If X,, is a generalized Dynkin diagram (or a subset of Z" or any variation thereof)
with m vertices and o € S, then o(X,,) is the generalized Dynkin diagram (or
the object in question) with the numeration of the vertices after applying o to the
numeration of X,,. In this respect, s;; denotes the transposition (ij), what should not
be confused with the reflection s;. For brevity, we abbreviate some permutations in Sy
and Ss as follows:
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K1 = §1234, K2 = §234, K3 = 812534, K4 = 813524,
K5 = $142, K6 = §1324, kK7 = $134, kg = §324.
W1 = §155234, W2 = $354, W3 = 515823, W4 = 8§345, W5 = 514523-

Along the way, we recall the Cartan matrices of types A, B, C, D, E, F and G with
the numeration we use; see (4.2), (4.7), (4.15), (4.23), (4.28), (4.35), (4.43). We also
need some other generalized Cartan matrices:

AD. o (3.2)
n+1
(o) ] o) o — O o
1 2 3 n—2 n—1 n
AWM 0 =>0o (3.3)
(2) —
A7 = 3.4
2 C1’<— S 34
Cr(,l): o=—=>o0 ) ) o< o 3.5)
1 2 3 n—1 n n+1
2
AD o (3.6)
o ——o0 o o o o
A? o<—o0 o o o<— o (3.7)
2n 1 2 3 n—1 n nt1
(3)
D;’: 3.8
: ST 38 G:8)
(2)
E;: — 3.9
6 A St T G2
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(1)
F,": — 3.10
; O S S S (3.10)
Ty Laras 3.11)
o o] o o) o (0]
1 2 m m+1 m+2 m+n
T®: 3 (3.12)
i ¢

T o (3.13)

/ 4\

o] o:o

1 2 3
ARk o (3.14)

o o o

1 2 3
DA, o o=—>0 o o oe=— o  (3.15)

1 2 3 4 n—1 n n+1
CE,: o (3.16)
n
o o o 0O <—— o
1 2 n—3 n—2 n—1
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it o o o=—=>o0<—o0 (3.17)
1 2 3 4 5
(DA,
Fyom o o o o—=>o0 o (3.18)
1 2 3 4 5 6
Eéz)A: o o o o<—o o (3.19)
1 2 3 4 5 6
(€N
D" 3.20
! A (320
- d
Heq : < o. cd > 4 (3.21)

We also abbreviate ,, T = ,,T1, A&” =1T1.

3.2 Information

In this Part, we give information on Nichols algebras B, for matrices g satisfying (2.1)
such that q is arithmetic, see Definition 2.12, and has a connected Dynkin diagram.
We organize the information as follows.

e We first describe the (abstract) generalized root system R, including

— The basic datum (X, p).

— The bundles (C¥), ¢y of Cartan matrices and (A*),cy of sets of roots.

— The Weyl groupoid, see Definition 2.28. Actually, since the basic datum is
connected, the groupoid is determined by the isotropy group at any point; so
we describe this last one—see [3] for details of the calculations.

— The Lie algebra or superalgebra realizing the generalized root system as
explained in Sect. 2.8, when it exists.

e The possible families of matrices (q*) e x (actually the Dynkin diagrams) with the
prescribed GRS. We call them the incarnations. Concretely, we exhibit families
of matrices (q*),cx such that

(a) the Cartan matrix C9" defined by (2.24) equals C* for all x € X.
(b) The matrix p;(q*) defined by (2.25) equals g* ™ foralli eI, x € X.
By (a) and (b), the Weyl groupoid of R is isomorphic to the Weyl groupoid of
(q%)xex- It follows at once that R and (q"),cx have the same sets of real roots.
But R is finite, so all roots are real, hence (q°),cy has a finite set of real roots,
and a fortiori it is finite.
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e The PBW-basis, consequently the dimension or the GK-dimension. That is, we
give the formulae for the root vectors as defined in (2.18) in terms of braided
commutators, see Sect. 2.2. Notice that the definition of the Lyndon words depends
on the ordering of I, which is in our context the order of the Dynkin diagram.
Furthermore this order happens to be convex.

e The defining relations.

e The set @9 of Cartan roots; notice that the concept of Cartan vertex depends on g,
not just on the root system.

e The associated Lie algebra, see Sect. 2.11 and the degree s of BZ,OP.

Remark 3.1 The same generalized root system could have different incarnations: of
course, there is a dependence on the parameter g but there could be more drastic
differences. For instance, the GRS B(j|6 — j), j € Ip_; has incarnations described in
Sect. 5.2 and another in Sect. 6.1. Notice that the Cartan roots and consequently the
associated Lie algebra are different in these incarnations; thus some of the data above
does not depend just on the generalized root system. Besides this, it can be shown that
all possible incarnations are as listed in the corresponding Subsection.

3.3 Organization

This Part is organized as follows:

e Section 4 contains the treatment of the matrices q of Cartan type, Definition 2.15,
with Subsections devoted to each of the types A, B, ..., G. Here the Weyl groupoid
is just the Weyl group.

e In Sect. 5 we deal with the matrices q of super type, meaning that the general-
ized root system coincides with that of a finite-dimensional contragredient Lie
superalgebra in characteristic 0 (no a priori characterization is available); Cartan
type is excluded. Thus we have Subsections devoted to the types A (m|n), B(m|n),
D(m|n), D2, 1; a), F4), G(3).

e Section 6 contains the treatment of the matrices of standard, but neither Cartan nor
super, type. Recall that standard means that all Cartan matrices are equal. There
are such diagrams only in types B, Sect. 6.1, and G, Sect. 6.2.

In Part 3, we deal with Nichols algebras of:

e matrices q of modular type, meaning that the generalized root system coincides
with that of a finite-dimensional contragredient Lie algebra in characteristic > 0
(no a priori characterization is available); Cartan type is excluded. Thus we have
Subsections devoted to the types of the Lie algebras w#(4, o) (char 2), bt (2, a)
and bt(3) (char 3);

e matrices q of super modular type in characteristic 3, not in the previous classes,
meaning again coincidence with the generalized root system of a finite-dimensional
contragredient Lie superalgebra (no a priori characterization is available). There
are Subsections devoted to the types of the Lie superalgebras btj(2; 3), el(5; 3),
9(1,6),9(2,3),9@3,3), g(4,3), 93, 6), 9(2,6), g(8, 3), g(4, 6), g(6, 6), g(8, 6);

e analogous to the preceding but in characteristic 5. There are Subsections on the
types of the Lie superalgebras brj(2; 5) and el(5; 5);
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e (yet) unidentified generalized roots systems, i.e. that so far have not been recog-
nized in other areas of Lie theory. These are called ufo(1),...,ufo(12), except
that there is no ufo(8). There is a Subsection for each of the corresponding
Nichols algebras loosely called ufo(1), ..., ufo(12)—here ujo(8) has generalized
root system ufo(7).

3.4 Attribution

The presentations of the Nichols algebras that we describe here appeared already in
the literature. A general approach to the relations was given in [23,24]. Of course,
those of Cartan type, giving the positive parts of the small quantum groups, were
discussed in many places, first of all in [65-67], for a parameter g of odd order (and
relatively prime to 3 if of type G2). For Cartan type Ay, there are expositions from
scratch in [82] for generic ¢, in [12] forg = —1, and in [20] forg € G/,,, N > 3. Other
Nichols algebras of rank 2 were presented in [27,45,53]. Standard type appeared in
[22]; this paper contains a self-contained proof of the defining relations of the Nichols
algebras of Cartan type at a generic parameter, i.e. the sufficiency of the quantum
Serre relations. Nichols algebras associated to Lie superalgebras appeared first in
the pioneering paper [88]; see also the exposition [10]. The explicit relations of the
remaining Nichols algebras were given in [25].

3.5 Gelfand-Kirillov dimension

As we said, the classification of the matrices q such that GK-dim Bq < 00 18 not
known.

Conjecture 3.2 [5] If GK-dim By < oo, then q is arithmetic.

The Conjecture is true when q is of affine Cartan type or & = 2. For convenience,
we collect the information on the arithmetic Nichols algebras with matrix q such that
0 < GK-dim By < oo.

Cartan type

Let g be of Cartan type with matrix A; we follow the conventions in Sect. 4. Then
0 < GK-dim By if and only if ¢ ¢ G, in which case GK-dim By = |A$|.

Super type

Let q be of super type; we follow the conventions in Sect. 5. Then 0 < GK-dim By if
and only if the following holds:

o Type A(j— 1160 —j),j € HL%J’ see Sect. 5.1.8: ¢ ¢ G, in which case

N
GK-dim By = (;) +< ) J).
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e Type B(j|0 — j), j € Ip—1, see Sect. 5.2.6: ¢ ¢ G0, in which case
GK-dim By = 6> —2j (0 — j — ).
e Type D(j|0 — j), j € Ip_1, see Sect. 5.3.11: g ¢ Goo, in which case
GK-dim By = (0 — j)(0 — j — 1) + j>.
e Type D(2, 1; o), see Sect. 5.4: Here ¢q,r,s # 1, grs = 1; the condition is that
either exactly 2 or all 3 of g, r, s do not belong to G+, in which case GK-dim 3
is either 2 or 3, accordingly.

o Type F(4), see Sect. 5.5.5: g ¢ G, in which case GK-dim By = 10.
o Type G(3), see Sect. 5.6.5: ¢ ¢ Goo, in which case GK-dim By = 7.

Modular type

Let g be of modular type. Then 0 < GK-dim B, if and only if the following holds:

o Type wk(4), see Sect. 7.1.4: ¢ ¢ Goo, in which case GK-dim By = 6.
o Type br(2), see Sect. 7.2.4: g ¢ Goo, in which case GK-dim By = 2.

4 Cartan type
Here the basic datum has just one point, hence there is just one Cartan matrix and the

Weyl groupoid W is the corresponding Weyl group W. All roots are of Cartan type.
Throughout, we shall use the notation

wj= Y o, i<jel (4.1)
kE]I,',j

4.1 Type Ap,60 > 1
4.1.1 Root system

The Cartan matrix is of type Ap, with the numbering determined by the Dynkin
diagram, which is

o o o o. “4.2)
1 2 0—1 0
The set of positive roots is
AT = lk, jel, k< j}. 4.3)
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4.1.2 Weyl group

Lets; € GL(ZY), si(i) = —aj, si(aj) = aj +a; if |i — j| = 1, si(a)j) = «a; if
i —j| > 1,i,j €. Then W = (s;:i € I) >~ Sy41 [30, Planche I].

4.1.3 Incarnation

The generalized Dynkin diagram is of the form

o “4.4)
4.1.4 PBW-basis and (GK-)dimension
The root vectors are

Xo;; = Xoy = Xi, 1 €],

Xayj = X(ij) = [Xis Xayyy jles T < J €L
cf. (2.11). Thus
{xg"”x?;jl%)xg"__l”’_' .. .xgll'g) cxM0 < njj < N}
is a PBW-basis of By. If N < oo, then
dim By = N(2),

If N = oo (thatis, if ¢ ¢ Go), then

0+1
GK-dimBq=< ;L )

4.1.5 Relations, N > 2

Recall the notations (2.9), (2.10), (2.11). The Nichols algebra B, is generated by
(xi)ier with defining relations

xij=0, i<j—1 x;5=0 |j—il=1 x{;,=0 k=<l (45
If N = o0, ie. ¢ ¢ Goo, then we omit the last set of relations.
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4.1.6 Relations, N = 2

The Nichols algebra By is generated by (x;);er with defining relations
xij=0, i<j—1  [Xgi42.%ie1le =0; Xy =0, k<l  (4.6)

4.1.7 The associated Lie algebra and s

The first is of type Ag, while

A=(N=1Y i —i+a;.

iel
4.2 Type By, 0 > 2

Here N > 2.

4.2.1 Root system

The Cartan matrix is of type By, with the numbering determined by the Dynkin dia-
gram, which is

6 —o0. 4.7

—0
20
>
L
>

Recall the notation (4.1). The set of positive roots is
AT ={ajli < jelU{aig+ajpli<jell. 4.8)

4.2.2 Weyl group

Leti e I and define s; € GL(Z") by

—, l:.la
@) aj +aj, i—jl=1,i <8,
si(ai) =
T lagor 4209, j=0-1,i=0,
aj, i —j|>1,

j el Then W = (s;:i € I) ~ (Z/2)? x Sy [30, Planche II].
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4.2.3 Incarnation

The generalized Dynkin diagram is of the form

2 -2 2 -2 2 2 -2
R G S “9)
4.2.4 PBW-basis and (GK-)dimension
The root vectors are
xa,-i =xocl- Z.X[, l E]L
-xol,‘_/' = X(ij) = [xiaxa(i+1)j]6s l < ] S ]L
Xajg+apg = [x(x,-g,xé]c’ i€lg_y,
xai9+ajg = [—xol,'g+0t(j+1)9’xj]c’ i< .] € H@*ls
cf. (2.11). Let M = ord ¢*. Thus
meg— ng— ng—10—
BRI L PR 7y TR SOV
|0 <njp < N, Ofn,'j <M, j#6; Ofm,'j <M}
is a PBW-basis of By. If N < oo, then
dim By = MOIO-DNO.
If N = oo (that is, if ¢ is not a root of unity), then
GK-dim By = 6.
4.2.5 Relations, N > 4
The Nichols algebra B, is generated by (x;);e1 with defining relations
Xiii+1 =0, i <0; xj=0, i<j—1; xp0090-1=0; (4.10)
N .
x, =0, «aelugliel}
i’ l N = 2M even. .11
Xy =0, aé¢fagli€ll,
=0, aeay, N odd. (4.12)

If N =00, ie. g ¢ Guo, then we have only the relations (4.10).
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4.2.6 Relations, N = 4

The Nichols algebra By is generated by (x;);er with defining relations

xj=0, i<j—1; xp000-1=0; [xGiy2),%it1le=0, i<6;

2 ) 4 ) 4.13)
x, =0, ad¢{ogliell x, =0, ae{oqgliell}
4.2.7 Relations, N =3
The Nichols algebra By is generated by (x;);er with defining relations
xii =0, i<j—1,; Xiii=1 =0, i <0;
Y B (4.14)
[x000—10—25 Xpo—11c = 05 x, =0, aeA;.

4.2.8 The associated Lie algebra and s

If N is odd (respectively even), the associated Lie algebra is of type By (respectively
Cy), while

g= Z[(M —1)i20—i— 1)+ (N —1D® —i)]a;.
iel
4.3 Type Cy, 0 >3

Here N > 2.

4.3.1 Root system

The Cartan matrix is of type Cyp, with the numbering determined by the Dynkin dia-
gram, which is

6 —o. (4.15)

-0
20
>
L
>

Recall the notation (4.1). The set of positive roots is
A+={Ol,‘j|i§jEH}U{ai9+ajg_1|i§j€H9_1}. (4.16)
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4.3.2 Weyl group

Leti € I and define s; € GL(Z!) by

—ai, i=J

si(aj) = aj +a, i—jl=1,j <8,
2091+ oy, j=0,i=0—1,
o), li—Jjl>1

jel. Then W = (s;:i €) =~ (Z/2)9 x Sy [30, Planche III].
4.3.3 Incarnation

The generalized Dynkin diagram is of the form

—1 —1 -2 2
q q q q q q9 q q
o o o o o 4.17)
4.3.4 PBW-basis and (GK-)dimension
The root vectors are
Xoy; = Xa; = Xi, iel
Xogj = X(ij) = [xi, xot,urlj]c‘a i< ] el,
Xaig+aig_1 = [X(i0)s X(io—1)le, iely_,
Xezgtag_ = [X(i6)s Xo—1]cs iely_q,
-xa,'g—}-oljg,] = [-x(xi9+aj+19,11 xj]Cs i< .] € H9—2v
cf. (2.11). Let M = ord ¢%. Thus
nge _Mo—10-1 ng—16 ng—16—1 mi2 nmilg—1
{xG xﬁlﬁ—l&“‘ae—le—lx(@—l@)x9—1 “Xaggtang_y  Xagtag_igoy

x("]'g)...xf“|0§n,-9 <M;0<njj<N,j#6;0=<m < N]
is a PBW-basis of By. If N < oo, then
dim By = MONOO-D,
If N = oo (that is, if ¢ is not a root of unity), then

GK-dim By = 6%
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4.3.5 Relations, N > 3

The Nichols algebra By is generated by (x;);er with defining relations

xij =0, i<j—1 xijj =0, j=i+1,@ j)#®O-10);

Xijio =0, i =0 — 1;

xév =0, «a € A short;

Iy N = 2M even.

x, =0, o€ Aylong.

=0, aeay, N odd.

If N = 00, i.e. ¢ ¢ Goo, then we have only the relations (4.18), (4.19).
4.3.6 Relations, N =3

The Nichols algebra By is generated by (x;);er with defining relations

xij=0, j=ixl, (,))#0-1,0); x;=0, i<j—1

[[x@©—20y, Xo—1lc, X6—11c = 0; x2=0, aeA,.

4.3.7 The associated Lie algebra and st

(4.18)
(4.19)

(4.20)

4.21)

(4.22)

If N is odd (respectively even), the associated Lie algebra is of type Cy (respectively

Bg), while

A= Z[(N —1Di20 —i -1+ M —-1)0 —i)]e;.

iel

4.4 Type Dy, 0 > 4

4.4.1 Root system

The Cartan matrix is of type Dy, with the numbering determined by the Dynkin

diagram, which is

— 0
O
5
|

)
5
|

_
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Recall the notation (4.1). The set of positive roots is

At ={ajli<jel (,j)#©O—1,0)

. . (4.24)
Ulaio—2+aoli € loa}Ufeig+ajoali<jelg}.
4.4.2 Weyl group
Leti € I and define s; € GL(Z!) by
—o;, l = js
silaj) = qaj+a;, |i—jl=1,i,jelyp_y, or{i,j} =1{0—2,0},
aj, otherwise,
jel. Then W = (s;:i € I) ~ (Z/2)?~! x Sg [30, Planche IV].
4.4.3 Incarnation
The generalized Dynkin diagram is of the form
g (4.25)
q—l
g ' q ¢ ¢ 9 ¢7' q ¢ ¢
o) o) o] (o) o) o]
4.4.4 PBW-basis and (GK-)dimension
The root vectors are
xa,—,- :x(xi Z.X[, l E]L
xa,-‘,- = X(ij) = [xia xot,’_Hj]Ca l < .] € H@-l’
Xajgotag = [X@0-2), Xolc, iellg_y,
Xajg = [Xaig_otag> Xo—1lc> i€llg_s,
xot,'9+()ljg,2 = [x()li9+otj+19,29 xj]C7 i< J € HQ*Z,
cf. (2.11). Thus
n ng—16—1 __MmMp—-20 ng—20 ng—20—1 ng—20-2 m
{xegexefl Koy atan ¥ 620X 0—26-1)%0-2  ++ Fagbaa -
x;”l':;ée_zﬁ_z .. .lel'g) cox( M0 < ngj, mij < N}
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is a PBW-basis of By. If N < 0o, then

dim Bq = N7,

If N = oo (that is, if ¢ is not a root of unity), then

GK-dim By = 6(6 — 1).

4.4.5 Relations, N > 2

The Nichols algebra B, is generated by (x;);e1 with defining relations

X@e-no = 0 xij=0, i<j—1,0J)#©-20);
Xijg=0,1=60-2; x;;=0, |j—il=1,i,j#86;
Xijo—2) =0, i =0; xév =0, acA,.

If N =o00,ie. g ¢ Goo, then we omit the last set of relations.

4.4.6 Relations, N =2

By is presented by (x;); 1 with defining relations

xij=0, i<j—=1,3GJ)#0-2,0); xp-19=0;
[XGit+2), Xit1le =0, i <63 [X(6—3)0—20. X9—2lc = O;
xé =0, aeA,.

4.4.7 The associated Lie algebra and s

The first is of type Dg, while

00 —1
s= - X jeo—j—ne+ " Dy tan

i€lp_n

@ Springer

(4.26)

(4.27)



On finite dimensional Nichols algebras of diagonal type 405

4.5 Type Eo, 0 e Hﬁ’s
4.5.1 Root system

The Cartan matrix is of type Ep, with the numbering determined by the Dynkin
diagram, which is

(4.28)

>0

— O
S¥e]
B
|

(5]
B
|

38
B
L

Recall the notation (3.1). The positive roots of E¢ are

[1,12,2,123,23,3,1234,234,34,4,12345,2345,345,45,5,122334256,122324256,
12232456, 1223246, 12324256, 1232456, 123246, 2324256, 232456, 23246,

1223342562,123456,23456,3456,12346,2346,346,1236,236,36,6}
={Bi..... B3} (4.29)

The set of positive roots of E7 is

{1,12,2,123,23,3,1234,234,34,4,12345,2345,345,45,5,123456,23456,3456,
456,56, 6, 12233435267, 12232475267, 12232425267, 1273242567, 122374757,
1232435267, 1232425267, 123242567, 12324757, 237435267, 232425267, 23247567,
23%4257,122334453627%, 122334453672, 1234%5%67, 234%5%67, 34°5%67,
122334452677, 12342567, 2342567, 342567, 122334352677, 1234567, 234567, 34567,
122324352677, 12324352672, 1234257, 123457, 12347, 23%435%67°, 234257, 23457,

2347, 4567, 34257, 3457, 347,457, 47, 7}
={B1..... Be3}- (4.30)

@ Springer



406 N. Andruskiewitsch, I. Angiono

The set of positive roots of Eg is

{1,12,2,123,23,3,1234,234,34,4,12345,2345,345,45,5,123456,23456,3456,
456, 56, 6, 1234567, 234567, 34567, 4567, 567, 67, 7, 1223343536278, 1223243536278
1223242536278, 122324252678, 122324252678, 12232425268, 123243536278,
123242536278, 123242526278, 12324252678, 1237425268, 23243536278, 23242536278,
23242526278, 2324252678, 232475268, 122334459647282, 122334%57637282,
122334%5363782, 12342536278, 2342536778, 342536278, 12233445467 7282,
122334%5463782 12342526278, 2342526278, 342526278, 1223343546728,
12233435463782, 1234526278, 234526278, 34526278, 122334475064 7283,
1233%4750647283 123334%5%62782, 12233435%62782, 12233435362782,
122324354637282, 1232435637282, 1234252678, 12345%678, 12345678,
12232435%63782, 1232435467782, 123425268, 12345268, 1234568, 122334750647283,
1223344566%7283  122334%5%6%7283 2324354637282, 23243563782, 4526278,
12232435%6%782, 1223243536782, 234252678, 23425268, 1232435462782,
1232435362782, 34752678, 3475768, 1273345963 778%, 1223744563783,
12232425362782, 1232425362782, 123425°62782, 123458, 232435467782, 2345%678,
3452678, 452678, 232435362782, 2345678, 345678, 45678, 232425762782,
23475%6278%, 2345768, 234568, 23458, 347576778, 345268, 34568, 3458, 5678

45268,4568,458,568,58,8] ={B1...., B0}
(4.31)

For brevity, we introduce the notation
de =36, d7 =63, dg=120.

Notice that the roots in (4.29), respectively (4.30), (4.31), are ordered from left to
right, justifying the notation S, ..., B4, 0 € Is s.

4.5.2 Weyl group

Leti e I and define s; € GL(Z") by

—ai, i=J,
si(aj) = Yo+, |i—jl=1,i,jelp_q, or{i, j} =1{6—3,6},
aj, otherwise,

j €. Then W = (s;:i €I) [30, Planches V-VII].
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4.5.3 Incarnation

The generalized Dynkin diagram is of the form

q
o (4.32)
g
—1 -1 —1
q 9 q q 49 q9 49 q
o o o o o

4.5.4 PBW-basis and (GK-)dimension

The root vectors xp; are explicitly described in [22, pp. 63 ff], see also [63]. Thus a
PBW-basis of By is

Ndy  Ndy—1 n» n
X lx, 0T L x2x 10<n; < NY.
By~ Bdg—1 B2 B1

If N < oo, then dim By is N% 1f N = 0o, then GK-dim Bg is dp.
4.5.5 Relations, N > 2
By is generated by (x;);cr with relations
xij=0, Gj=1 x4j=0, g #1; x) =0, aeA,. (4.33)
If N =o00,ie. g ¢ Go, then we omit the last set of relations.
4.5.6 Relations, N = 2
By is generated by (x;);e1 with relations
xij=0, gij=1 [xjxjle=0, qij,qjx #1: x§ =0, e A;. (4.34)
4.5.7 The associated Lie algebras and s
Those are of type Eg, while

E¢: sa=(NN —1)16a; + 30ar + 423 + 3004 + 16a5 + 2206) ,
E;: a=(N—-1)Q7a1 + 52wy + 75a3 + 9604 + 665 + 346 + 49a7) ,
Eg: a=(N—1)(58ax; + 114ar + 168a3 + 22004 + 270a5

+182a6 + 9207 + 1360x3) .
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4.6 Type F4
Here N > 2.
4.6.1 Root system

The Cartan matrix is of type F4, with the numbering determined by the Dynkin dia-
gram, which is

o o<=o o. (4.35)
1 2 3 4
The set of positive roots is
At = {1, 12,2, 12223,1223, 123,223, 23, 3, 12243%4, 1224324,
1227324, 1722374, 17234, 127374, 1273%4, 1723742, (4.36)
12234, 1234, 2%3%4, 234,234, 34,4} = {1, . . ., 524} :
4.6.2 Weyl group
Leti € I and define s; € GL(ZH) by
—o, l = jv
e, li—jl=1,0G0) #2,3)
siaj) = ..
a3 + 202, (0, ))=(2,3),
o, li —jl>1,
j €L Then W = (s;:i € I) = ((Z/2)* x S4) » S3 [30, Planche VIII].
4.6.3 Incarnation
The generalized Dynkin diagram is of the form
—1 -2 2 -2 2
d 4 g4 41 9 (4.37)

4.6.4 PBW-basis and (GK-)dimension

Let M = ord ¢*. The root vectors xg; are explicitly described in [22, pp. 65 ff], see
also [63]. Thus a PBW-basis of B for type Fy is

Xpoi Xy xgl |0 <nj < Nif Bj is short; 0 < n; < M if B; islong}.
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If N < oo, then dim By = M'?N'2. If N = oo, then GK-dim B, = 24.

4.6.5 Relations, N > 4

The Nichols algebra By is generated by (x;);e1, with defining relations

Xij=0,i<j—1x0=0 x;5 =0, |j—il=1, (@(Jj)#Q2,3)
xév =0, «a e A short;

M N = 2M even
x, =0, o€ A long.
=0, aeay, N odd.

If N =00, ie. q ¢ Geo, then we have only the relations (4.38).

4.6.6 Relations, N = 4

The Nichols algebra By is generated by (x;);er, with defining relations

[x@24), x3]c = 0; x21 =0; x112 =0;
xij=0, i<j—1 x2223 = 05
xg =0, o€ A short; xozl =0, o€ Ay long.

4.6.7 Relations, N =3

The Nichols algebra By is generated by (x;);cr, with defining relations

xij=0, i<j—1 [x2234, x23]c = 0;
xij =0, j=i£1,G,/)#@2,3); x2=0, aeA;.

4.6.8 The associated Lie algebra and st

The first is of type F4, while

7= (12M + 10N — 22)a; + (24M + 18N — 42)a»
+ (18M + 12N — 30)a3 + (10M + 6N — 16)as.

4.7 Type G,

Here N > 3.

7 (4.38)
,  (4.39)

(4.40)

(4.41)

(4.42)
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4.7.1 Root system

The Cartan matrix is of type G, with the numbering determined by the Dynkin
diagram, which is

o — °. (4.43)
The set of positive roots is
Ay = {oy, 301 + a2, 201 + a2, 301 + 202, @1 + @2, a2} . (4.44)
4.7.2 Weyl group
Lets; € GL(ZH), si(a;) = —aj, si(ax) = ap + 3aq, s2(a;) = a; + az. Then
W = (s;:i €I is the dihedral group of order 12 [30, Planche IX].
4.7.3 Incarnation
The generalized Dynkin diagram is of the form
g g (4.45)

4.7.4 PBW-basis and (GK-)dimension
The root vectors are
Xei = Xis Xmajta, = ade X' (¥2) = X112, X3ay4+200 = [X112, X12]c,

cf. (2.11) and (2.12). Let M = ord ¢°. Thus

ny_ny_nj3 ng _ns ne
[x2 X123 %30, 12, X 112%1112%1 | 0 <nii,n3,ns,< M, 0 <np ng ng< N}.

is a PBW-basis of By. If N < 00, then
dim By = M N°.
If N = oo (that is, if ¢ ¢ G), then GK-dim By = 6.
4.7.5 Relations, N > 4
The Nichols algebra By is generated by (x;);e1, with defining relations

xi1112 = 0; x221 =05 (4.46)
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N N N
xp =0; x170 = 0; x5, = 0;

o o - N =3M €37, (4.47)
X2 = 05 X30,400, =03 X7 =0
xN=0, aeAy, N ¢ 3Z. (4.48)

If N =00, ie. q ¢ Goo, then we have only the relations (4.46).

4.7.6 Relations, N = 4

The Nichols algebra By is generated by (x;);c1, with defining relations
(X301 4200 X12)e = 07 X221 =07 x3 =0, a€ AL, (4.49)
4.7.7 The associated Lie algebra and st

The first is of type G, while

7= (6M + 4N — 10)a; + (4M + 2N — 6)a.

5 Super type

In this section we consider the matrices q of super type, i.e. with the same generalized
root system as that of a finite-dimensional contragredient Lie superalgebra (not a Lie
algebra) in characteristic 0.

We start by a useful notation. As always § € Nand [ = Iy. Let g € k* — G, and
let J C I. Let Ag(q; J) be the generalized Dynkin diagram

q11 q12 g2 qo—16-1 Go—10 q60
O —— 8 O [e) e — o

where the scalars satisfy the following requirements:

(1) @ = qz5d0-16}

(2) ifi € J,then gi; = —1 and Gi—1; = G 3

(3) ifi ¢ J, theng;—1; = ql.jl = gji+1 (only the second equality if i = 1, only the
firstif i = 0).

This is a variation of an analogous notation in [46]. We notice that the diagram
Ay (q; J) is determined by g and J, that ¢;; = g! if i ¢ J, and that §;;41 = g™ for
alli < 6:

e If 0 € J, then ggo @ —1, hence gg_1¢ @ a.

~ 3) 1 ~
e If0 ¢ J,then gy_1p &) qggl;hence qoo 0] gand gy_19 = al.

e Let j €I, j < 6. Suppose we have determined ¢;; and g;_y; for all i > j. Then
(2) and (3) determine ¢;; and g;_1;.
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If J = {j}, then Ag(c; J) is

Q
Q
Q

|
—_
oQ
Q
oK

Below we shall specialize g to our parameter ¢ or variations thereof. Also, the

symbol Ag(q; J) P

6 means a diagram with 6 + 1 points; the first 6 of them

span Ag(q; J), there is an edge labelled p between the 6 and the 6 + 1 points, the last
labelled by r. Symbols like this appear here and there.
GivenJ C I, J = {iy, ..., ix} withi; < --- < i}, we shall need

k
> =0
=1

Notice that J = #, if and only if /K7 = 0, if and only if Ag(q; J) is of Cartan type
Ay (because g ¢ G»).

ARy =

5.1 Type A(jl0 — j), j € Hlozilj
Here N > 2. We first define
ag,j = {I C LKy = j}. (5.1
Observe that for k € I, {k} € ag j if and only if k = j.
5.1.1 Basic datum, 1 < j < %
The basic datum is (&g ;, p), where
Ay j = ag,j U ap,0+1— 5.2)

and p: 1T — SAM is as follows. If i € I, then p;: Ag,j — Ag,; is given by

J, i¢l,
o JIvi =iy, ieli—1,i+1¢1l,
P =V T FIpUlitl), fiFlelitl¢l, (5-3)
J—{i+1}, ii—1,i+1el

If i = 1, respectively 0, then i — 1, respectively i + 1, is omitted in the definition
above. It is not difficult to see that

e p; is well-defined and ,ol.2 = id. Hence (&¢,;, p) is a basic datum.
e Let J € Ay ;. Then there exists k € T such that J ~ {k}. Hence (&g ;, p) is
connected.
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Indeed, we see that p; (a9, ;) = ag,j, pi(ag,0+1-j) = ag,e+1—; if i < 6, but
po(l) € apoy1-jifJ € ap j,0 €.

5.1.2 Basic datum, 0 odd, j = %+

Here j = 60 + 1 — j and we need to consider two copies of ag, ;, see (5.1). Let
3y, = {j Je ag,j} be a disjoint copy of ag, ;. Then the basic datum is (A4, ;, p),
where

Ry j = ag,; U ag,j. 5.4)

and p: 1 — SA{-),_/' defined as follows. If i € I, i < 0, then p;:ag,; — ap,; and
piia@p,j — ap,j are given by (5.3). If i =0 and J € ay, ;, then

Py | J E
0el,o—1¢J | TU{d—17 JU{o—1}
felo—-1el] |J-{6-1} J—-{0-1}

It is not difficult to see that

e p; is well-defined and ,oi2 = id. Hence (&g ;, p) is a basic datum.
e (Ag,j, p) is connected.

5.1.3 Root system

The bundle of Cartan matrices (CJ )Je 29, is constant: CY is the Cartan matrix of type
Ag asin (4.2) forany J € Ag ;.
The bundle of sets of roots (A7) Jeny,; 18 constant:

A"H = {:l:oti’jli,j el,i S]}

Hence the root system is standard, with positive roots (4.3). Notice that this is the
generalized root system of type A(j|6 — j),i.e. of sI(j|0 + 1 — j).

5.1.4 Weyl groupoid

The isotropy group at {j} € Ag,; is
WY = (sizi €1 # j) =S x Sg—j41 < GL(Z).
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5.1.5 Lie superalgebras realizing this generalized root system
Let py: Z' — G5 be the group homomorphism such that

pi(a) = =1 & i el (5.6)
We say that o € Z! is even, respectively odd, if pj(a) = 1, respectively py(a) = —1.

Thus J is just the set of simple odd roots.
To describe the incarnation in the setting of Lie superalgebras, we need the matrices

Ag(D) = (a;]]/)i,je]l e X, J e ag ;, where for i, j € I,

—1, i¢l, j=i+l

’ ’ 0, li —j| > 2.
The assignment
J+—(As (D). py) 5.7)

provides an isomorphism of generalized root systems, cf. Sect. 2.8.

5.1.6 Incarnation, 1 < j < 9—42'1

The assignment

Ap(q; D), if ARy = j;

5 . . (5.8)
Ag(g D), iftAR3=0+1—.

gives an incarnation. Indeed, let q be the matrix corresponding to Ag(q; {j}).

o First, the map (5.8) g, ; — Aj is bijective. By the definition (2.25), p; (Ag(g; 1))
equals Ag(g™"; p;i (])), depending on JKj, cf. (5.3), forall i € Tand J € Ry, ;.
Thus the basic data (ag,;, p) and (Xy, p) are isomorphic, cf. Proposition 2.7.1.

e By the definition (2.24), CA¢(4:9) is the Cartan matrix of type Ag for all J € Ag. js
thus coincides with CJ. By Proposition 2.7.1, the generalized root systems are
equal.

5.1.7 Incarnation, j = %
The assignment

T Ao(q: D). Tr— Ag(g™ D), Teaq,. (5.9)

gives an incarnation. Indeed, let q be the matrix corresponding to Ag(g; {j}).

e First, the map (5.9) Ay, ; — A& is bijective. By the definition (2.25), cf. (5.3), we
see that the basic data (A9, ;, p) and (Xy, p) are isomorphic, cf. Proposition 2.7.1.
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e By the definition (2.24), and Proposition 2.7.1, the generalized root systems are
equal.

5.1.8 PBW-basis and (GK-)dimension
Let J € Ay, ;. The root vectors are
= X, i € ]I,

Xayj = Xa

i

-xoll'j = x(ij) = [-xis -xol,'_Hj]Ca l < ] € ]L

with notation (2.11). Recall the super structure defined in Sect. 5.1.5. Then

nge no—16 ng—16-1 nie ny

0 <n;; < N if a;j is even,
X5 X0_19)%0—1 c Xy X

0 <njj <2ifa;;is odd
is a PBW-basis of B;. Notice that it depends on J. If N < oo, then
dlm Bq = 2](0+1—])N(£)+(9+é71)

If N = oo (that is, if ¢ is not a root of unity), then
. j 0+1—j
GK-dim B, = .
S (2) " ( 2 )

First, the set of positive Cartan roots is

5.1.9 Presentation

Oj_ = {Otij S Ai:aij even} .

The Nichols algebra B, is generated by (x;);er with defining relations

xij=0, i<j—1 Xiiix1 =0, qii #—1;
[xi-1i+1), xile =0, qii = —1; xl_z =0, gi=-1, (5.10)
xé\;j = 0, Qjj € Oi

If N = o0, ie. ¢ ¢ Goo, then we omit the last set of relations.
5.1.10 The associated Lie algebra and st

As the roots of Cartan type are the even ones, the associated Lie algebra is of type
A j—1 X AQ, j-

A=(N=1) > (@i+aip+-+a)+ Y (@+ai+ - +aj.

ajj even ojj odd
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5.1.11 Type A(1|1), N > 2

We illustrate the material of this Subsection with the example 6 = 2. Here /R({1}) =
) =1and /R({2}) =2 =241 —1. Thus A2 1 = {{1}, I», {2}}. The diagram of
(R2,1, p) is

In all cases, xq; = X1, Xqy = X2, Xg, = X1X2 — G12X2X] = X12.

_ —1
J = {1} This is Ay(q; {1}), i.e. o1 % Here a1 and aqp are odd; the

PBW-basis is {x3?x]32x]" |0 < na < N,0 < ny, nia < 2}. Also By is gen-
erated by (x;);e1 with defining relations

X0 =0; x7=0, xY¥=0. (5.11)

—1 -1
J =1, This is Ay(q; ), ie. o —————— o . Here «; and «p are the odd

roots; the PBW-basis is {x5?x]32x]' [0 < nja < N,0 < ny, ny < 2}. Also

By is generated by (x;);er with defining relations
x}P=0, x3=0, xI=0, (5.12)

q

J = {2} This is Ax(¢g~"; {2}), ie. g o . Here oy and «; are odd;

the PBW-basis is {x3?x]32x]" |0 <ny < N,0 < na, ni2 < 2}. Also By is
generated by (x;);c1 with defining relations

x112=0, x3=0, xI'=0. (5.13)
Clearly, there is a graded algebra isomorphism with the Nichols algebra corresponding
to Ax(g; {1}), interchanging x| with x;.
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On finite dimensional Nichols algebras of diagonal type 417

5.1.12 Example A3 >

Here a3 2 = {{2}, {1, 3}, I3}. We exemplify the incarnation when j = 6 + 1 — j in
the case 6 = 3, j = 2. We give the diagram of the basic datum and its incarnation:

a3({2h9)
[ ] [ ]
2 2
[ [ )
/ X I/As(]ILLI) NE
23({1,3%9) a3({1.3).g7h
[ ] [ ) > [ ] [ ]
>\ / RPN
[ ] [ ]
2 2
[ ] [ ]
a3({2hg™)

5.2 Type B(j10 — j), j € [p—1
Here g ¢ Gy.
5.2.1 Basic datum

The basic datum is (Bg,j, p), where
Bp,j = {J ClJRy = ]}

and p: I — Sg, ; is defined by (5.3) if i € [, while pg = id. We see that
o If k €1, then {k} € By, ; if and only if k = j.
e p; is well-defined and ,ol.2 = id. Hence (By,, p) is a basic datum.
e Let J € By, ;. Then there exists k € I such that J ~ {k}. Hence (By,;, p) is
connected.

5.2.2 Root system

The bundle of Cartan matrices (C?) Jeny, ; 1S constant: €7 is the Cartan matrix of type
Bp asin (4.7) for any J € By, ;.
The bundle of sets of roots (AJ ) JeBg,; is constant; A7 is given by (4.8).

Remark 5.1 There exists a bijection

Ju{e}y, 0¢1;

Bg.; — Bo.o_j J=
0 7 Boo-j, drd {J—{e}, 6el.
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418 N. Andruskiewitsch, I. Angiono

Notice that p; (j) = m for all J € By,; and all i € I, so the bijection above
establishes an isomorphism of basic data between (By, ;, o) and (Bg ¢, 0), which
gives an isomorphism between the root systems. Otherwise, the GRS of type B(j |0 — )
and B(k|6 — k), j,k € Tp_; with k # j,6 — j are not isomorphic, e.g. compute
IW{iDI.

5.2.3 Weyl groupoid
The isotropy group at {j} € By, ; is
win =g, i i # j)
~ ((Z/2) x'S;) x ((Z/2)°77 xSe—;) < GL(ZY.

where E]{.j} = g]{j}gjﬂ .0 60-16060—1---6; € W({j}). In other words, it is gener-

ated by 6 — 1 loops and one cycle (which is not a loop).
5.2.4 Lie superalgebras realizing this generalized root system
Let py: Z! — G, be the group homomorphism as in (5.6).

To describe the incarnation in the setting of Lie superalgebras, we need the matrices
By(]) = (b;.ﬂj),-,jeu e kX¥I J e ag j, where fori, j e I i #6,

. -1, i¢l,j=i+£1, 2, j=0,
P R T A BT T ST U B S S
T lo ren M| Eh iebimiEL b= on 0o
0, li—Jjl=2 0, j<6-2

Then g(By(J), py) = 0sp(2; + 1,2(6 — j)). The assignment
J—(Bs (D), py) (5.14)

provides an isomorphism of generalized root systems between the GRS of type B(;j |6 —
Jj) and the root system of osp(2j + 1, 2(8 — j)), cf. Sect. 2.8.

Remark 5.2 The bijection in Remark 5.1 gives also an isomorphism between the GRS
of type B(j|0 —j) and theroot system of 0sp(2(6 —j)+1,2j) # osp(2j+1,2(0—))).

5.2.5 Incarnation

The assignment

Ag_1(¢*]) ——— o, 0¢&J;
J = (5.15)
Ao_1(@H])—— o, hel
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gives an incarnation. Here the diagram in the second row in (5.15) is obtained from
the first one interchanging ¢ by —¢~!. Below we give information for the diagram in
the first row; the information for the other follows as mentioned.

Remark 5.3 The bijection in Remark 5.1 provides another incarnation of B(j|6 — j),
which is different from the first one.

5.2.6 PBW-basis, dimension

With the notation (2.11), the root vectors are

Yoy = KXoy = Xis iel,
Xaj = X(ij) = [Xi Yoy les i<jel,
Xaig+ag = [Xaq, X0]1c, ielp_q,
Xajg+ajo = [Xajoaings Xjles i<jely,

Let Ny = ord gq4; it takes different values when N is even. Thus

ngg Mo—10 ng—16 _No—16—1 mio mig nig ni
{xe ag—10+assXo—10X0—1 < Xagtang + o Xarptagy A

0 <njj < Ny;; 0 <mjj < Na,»9+a,-9}
is a PBW-basis of Bg. Let M = ord qz, P =ord(—q).If N < oo, then
dim B, = 22j(9—j—1)M92—9—2j(9—j—1)N9—j )28
If N = oo (that is, if g is not a root of unity), then
GK-dim By = 6% —2j (6 — j — 1).
5.2.7 Relations, N > 4

The set of positive Cartan roots is

Oi = {Ol,'jii <je Hg_l,aij even} Ulajg:i € g1}

(5.16)
U {aio + ajoci < j €lg, ai(j—1) even}.
The Nichols algebra By is generated by (x;);er with defining relations
xij=0, i<j—1 xiG+) =0, i<0,q;#—1;
X0660—1) = 0; [xi-1i+1), Xile =0, gii = —1; (5.17)
)cl.2 =0, gi=-1; x(iv" =0, ac Oi.

@ Springer



420 N. Andruskiewitsch, I. Angiono

If N =o00,i.e. g ¢ Goo, then we omit the last set of relations.

5.2.8 Relations, N =3

The set of positive Cartan roots is also (5.16). The Nichols algebra B is generated by
(xi)ier with defining relations

xj=0, i<j—1; [xi-1i+1), Xile =0, qii = —1;
Xiii£1) =0, gii #—1; [xe00-1), X90-1)]c =0, go—19-1 = —1;
(5.18)
[X66(6—1)(0—2)> X6(6—1)]c = O;
x2 =0, qgii = —1,; xév"zo, ae(’)i.
5.2.9 The associated Lie algebra and s

If N is odd (respectively even), then the associated Lie algebra is of type C; x By_;
(respectively C; x Cy_ ), while

7= Z o + Z (M — Daij + Z(P—I)Olie

i<jelp_y, i<jelp_y, iely,
ajj odd @jj even a;p odd
+ > (N=Daig+ Y. (@etaip)+ Y. (M—Deg+aj).
i€ly, i<jely, i<jely,
ajg even ai(j—1) odd @;(j—1) even

5.2.10 Types B(2|1) and B(1]2)

We exemplify the incarnation in the case # = 3, j = 1, 2. To describe the first example,
we need the matrices:

1 2 112 -2 q -1
(OPRPSL I SN S p®. 0L 5

2 E 2 2 2 -1
9 -1 g7 ¢q - q9° -1 q° 4
o, p(3): o —— o o .

p

Here B3,; = {{1}, {1, 2}, {2, 3}}. The basic datum and the incarnation are:

(1 {120 2 {23} pd o p@ o p®
e — [ ] [ ] [ ] [ ] o .

’

For the second example, we need the matrices:

2 2
q q -1
(1)1 o [¢]

q

@ Springer



On finite dimensional Nichols algebras of diagonal type 421

Here B3 > = {{2}, {1, 3}, I3}. The basic datum and the incarnation are:

2 2 L 1 {13} a2 g@ 1 q®
[ ] [ ] [ ] [ ] [ ] o .

’

By Remark 5.1, B(2]1) and B(1]2) are isomorphic, but the incarnations are not.

5.3 Type D(j|0 — j), j € Ip—1
Here N > 2. We consider different settings, according to whether j is <, = or > %.
Below c, ¢, d are three different symbols alluding to Cartan types C and D.

5.3.1 Basic datum, j < %

We first recall (5.2): Ag_1,; = ag—1,j U ag—1,0—j, and define o lg_1 — SAe—l,j as
in (5.3). The basic datum is (Dg_;, 0), where

Do,j = (as—1,j x {¢, ) U (ap—1,6-; x {d}). (5.19)
and fori € I, p;:Dg,j — Dy, ; is given by

(p; (D), ©), i €Iy,

. o (,Oé_l(q]]),d), l - 0 —_ 1 S a]]7
pild, e) = (pp_1(D,o), i=60-1¢1J,
J, o), i =0;

(p; (1), ©), i €lp—,
(oh_(D).d). i=0, whenf —1¢€J,

p[(;ﬂ,a = (péil(q]]),z;)’ l — 0, WhCn@ _ 1 ¢ J], (520)
J,0), i=0-1,;
(p; (D), d), € I,

pi(J,d) := (pp_ (1), D), i=86, whend —1¢€]J,

1
(pp_1,o), i=60—1€1l,
l
J,d), ief{0—1,0}, when6 —1 ¢ J.

5.3.2 Basic datum, j > %

Here we extend (5.2) as follows:
. 0 .
Ag—1,j = Bp-10—j = apg-1,0—j Yag-1,j, fOI‘E < j<6.

Then we define p":Ig_; — SAH—I,] as in (5.3); with this, the basic datum is (Dy, ;, p),
where Dy, ; and p are defined exactly as in (5.19) and (5.20).
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. . 0
5.3.3 Basic datum, j = 7
We first recall (5.4): Ag_1,; = ag—1,j U ap—1,j, and define plg_1 — SA&—I,_/ as in
(5.5). The basic datum is (Dg, j, p), where

Do, = (ag-1,j X {c.cH U @g—1,; x {d}),

and p;: Dy, j — Dg,j,1 € I, is defined as follows. If J € ag_1, j, then

(,Oi/(J),C), i €ly_a,
. R (pé_l(c]])v d)9 i=0—-1¢€ Jy
P O= N (e, i=0-1¢1,
(JL C)’ i = 9,

(pl/(J)v E)s l G ]10_2,
_ )y ).d), i=06, whent —1¢€],
pid,€) = (py_(D),C), i=0, whend —1¢1J,
J,0), i=0-—1;
(o). d),  ielps,
= o ey Do), i=0—-1€l],
piJ.d) = (pp_1(1),C), i=06, whent —1 €],
(J.d), ie€f{0—1,0}, wheno —1¢J.

Here and in the previous cases, all p;, i € Iy, are well-defined, and (Dg_;, p) is a
connected basic datum.

5.3.4 Root system, j # %

The bundle of Cartan matrices (C(J”‘))(J)x)eDeyj is the following:

o Let] € ag_y,;.If0 —1 ¢ J, then CY99 is the Cartan matrix of type Cy as in
(4.15).1f 0 — 1 € J, then CT-9 is and of type Ag as in (4.2).

o CY9 has the same Dynkin diagram as CY-9), but changing the numeration of the
diagram by 6 — 1 «<— 6.

o LetJ €ag_109—;.1f0 —1 ¢ J, then C -9 is the Cartan matrix of type Dg (4.23).
If & — 1 € J, then the Dynkin diagram of C%9 is of type g_» T, see (3.11).

Asin (5.6),letpy: Z?~! — G, be the group homomorphism such that py (o) = —1
iff k € J. Using this parity vector, we define the bundle of root sets (A(J'x))(‘]], xX)eDy,;
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as follows:

AV = {tayjii < j eI} U {E(ip +ajo1):i < j €lo_1}
U{t(io-1+aig):i €lg_1, prlaig-1) =1},
ATD = 55 15(409),
AVD = Ada; 1 <i < j<0,3G. j) # 0O —1,0)}
U {£(ag—1 + @o):py(as—1) = —1}
U {E(i9—2 + ap):i € Tg—s}
U{E(aip +ajo-2):i < j €Ty}
U {£(aio + io—2):i € Ig—a, pylaig—1) = —1}.

(5.21)

5.3.5 Root system, j = §

The bundle of Cartan matrices (C(J’x))(J,X)EDG_j is the following, where J € ag_1 ;:

e CJ9 and cT:0 are exactly as in Sect. 5.3.4.
e If6—1 ¢ J,then cdd is the Cartan matrix of type Dy (4.23).If ¢ — 1 € J, then
the Dynkin diagram of C%9) is of type 9_» T, see (3.11).

The bundle of root sets (A(J'x))(J,x)eDg‘j is defined analogously: A9 and ATO  are
as in (5.21), while AYD s as AT-D in (5.21).

5.3.6 Weyl groupoid

The isotropy group at ({j}, ¢) € Dy,; is

Wi = (e, i eni# j)
~ (2/22) 7 % S;) x ((Z/22)"~7 % So_;) < GL(ZY).

where ;}j} = /{"l}§j+l 60160601 ---6j € W{j}.

5.3.7 Lie superalgebras realizing this generalized root system, j # %

Let (J, x) € Dy, ;. Let pg,x): 7! — G, be the group homomorphism such that

o If x =c,thenpy (i) =—1 < i el
e If x =T, then p(y.3) is P(J.¢) but changing the numeration by 6 — 1 <— 6.
o If x =d, thenp(y g)(e;) = —1 <= eitheri € Jorelsei =0,0 — 1€ J.

To describe the incarnation in this setting, we need matrices
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e Cy()) = (Cf]j),-,jeﬂ e kXl Je ag,j, where for i, j €I,

—1, ¢l j=iE1.G ) # O -1.6),
|2, i¢ld, J Fl, iel,j=ixl,GJ) #0O-1,0),
GiTV0, iel, YT V-2 i=6-1,j=6,
0, li—jl=2

e Dy(J) = (d;];)i,je]l e kKL J e agg_j, where fori, j €1,

2. P ¢d, —1, ijelgyi¢lj=i+l,
J 0, iel, J Y . .
diiz 2 1_90—1¢J dljz :Fl, 17]€H9—1,1€J,]=li1,
0. i=6.0—1¢el, 0. ijelppli—jl=2
-1, j=6-2, -1, i=60-2,
Ao 2, j=0—-1¢€l], 4 -1, j=06—-1¢€],
65 =00, j=0-1¢J %T)0, j=0-1¢J,
0, jelys. 0, Jjelys.

Then g(Cg A, p(“]]’c)) ~ 0sp(27,2(6 — j)). The assignment

J.0) —(Co(D). pa.c)):
(J.0) — (s6-16(Co (D). P.3)- (5.22)
(J.d) —> (Dg(D), p.a))-

provides an isomorphism of generalized root systems between (Dg, j, o) and the root
system of 0sp(2j,2(6 — j)), cf. Sect. 2.8.

(55

5.3.8 Lie superalgebras realizing this generalized root system, j = 5

There is an incarnation of Dy ; as follows: (J, ¢), respectively (J, o), (j, d), maps to
the pairs in (5.22), accordingly.

5.3.9 Incarnation, j # %

Here is an incarnation of Dy ;:

9, (5.23)

J,0) — Apg_1(q; D)

1.0 — so-10( Aom1(@; D ——% ), (5.24)
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J,d) — o 0—1el, (5.25)

J,d) — o 0—1¢17. (5.26)

Ag2(qg TN Ty-0)

5.3.10 Incarnation, j = %

There is an incarnation of Dy ; as follows: (J, ¢), respectively (J, ©), J,d), maps to
the Dynkin diagram in (5.23), respectively (5.24), (5.25) or (5.26), accordingly.

5.3.11 PBW-basis and (GK-)dimension

The root vectors xg, are described as in Cartan type C, D, c.f. Sect. 4.3.4 and 4.4.4,
k € lp2_g, ;. Thus

92 _g4j Mo2—6+j—1
B *p :
62—6+j Po2—o+j—1

xgjxgll |0 <ng < Nﬂk}-
is a PBW-basis of Bg. Let M = ord qz. If N < oo, then

dim By = 22 O—)) pgo—J NO@—j—1D*+j7~1
If N = oo (that is, if ¢ is not a root of unity), then

GK-dim By = (0 — j)(0 — j — 1) + j*.

e The set of positive Cartan roots for (5.23) is

O ={ajj:i < j €L, pylayj) = 1}

. (5.27)
U{aig +ajo-1:i < j €lo—1, prlaig +ajo—1) =1}.

e The set of positive Cartan roots for (5.24) is sg_1g of the set described in (5.27).
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e The set of positive Cartan roots for (5.25) or (5.26) is

01 ={ajj:i < j €Iy, pplaij) =1}

U{aig—2+ag:i € lo—z, py(ai@—2) +ap) = 1}

(5.28)

U{aio +ajo—nii < j €lga, pilaig +ajo—2) =1}.

We now provide the defining relations of the Nichols algebras according to the
Dynkin diagram (5.23), (5.25) or (5.26). The relations for the Dynkin diagram (5.24)
follow from those in (5.23) applying the transposition sg_1 ¢.

5.3.12 The Dynkin diagram (5.23), gp—10—1 # —1, N > 4

The Nichols algebra B, is generated by (x;);e1 with defining relations

xij =0,
xg—19—160—2 = 0;
xp09—1 = 0;

x}=0, iel;

i<j—1

Xjij+1 =0,

Xg—19—10—16 = 0;
[XG@-t1i+1), Xile =0,

No _
Xo & =

’

iely1—I;

2
ielhponl; (5.29)

ae Ol

If N = o0, ie. ¢ ¢ Goo, then we omit the last set of relations.

5.3.13 The Dynkin diagram (5.23), gg—19—1 = —1, N =4

The Nichols algebra By is generated by (x;);er with defining relations

[x@©—-26), X9—10]c = 0;
Xg—16—10—2 = 0;
Xo—10-16-1 = 0;
x}=0, iel;

Xiii+1 = 0,
xij =0,
[X@-1i+1), Xile =0,

xév‘x =0,

iely_r—J;
i<j—1,;
iechoonl;

q
aec0].

(5.30)

5.3.14 The Dynkin diagram (5.23), gg—19—1 # —1, N =3

The Nichols algebra By is generated by (x;);cr with defining relations

[[x@©—20), X6—11cs Xo—11c = 0;

xg—19—10—2 = 0;
xp09—1 = 0;

xl-2=0, iel;
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Xjji+1 =0,

xij =0,

[x@-t1iv1), xile =0,

No _
Xa

)

ielyp_r—J;
i<j—1;
iEHz’gfzﬂJ;

ani.

(5.31)
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5.3.15 The Dynkin diagram (5.23), ggp—19—1 = —1, N # 4

The Nichols algebra By is generated by (x;);ecr with defining relations

[[xg—20—1, X(9—26)]cs Xo-1]c = 0, 0-2¢€l;
[[[X(e—%)), xg-1], - xe—z]c , xe—l]c =0, 6-2¢1J;
X141, Xile =0, i€heonl;  x;=0 i<j—1 (32
Xijij+1 =0, i €lp_p—T; xe00—1 = 0;
2 __ : . No __ q
xi=0, iel; x,* =0, acO].
If N =00, ie. g ¢ Goo, then we omit the last set of relations.
5.3.16 The Dynkin diagram (5.23), go—19—1 = —1, N =4
The Nichols algebra By is generated by (x;);er with defining relations
[[[x@-36). Xo—1]es Xo—2)cs Xo—1], =0, 6 —2 ¢ J;
[[xg—20—1, X(@—26)]cs Xo-1]c = 0, 6—-2¢el;
Xijiix1 =0, i€lpo—1T; xij=0, i<j—1 (5.33)
[XG—1i+1), Xile =0, i€l anl; x7=0, iel;
xle =0, ae0l; x5 19 =0.
5.3.17 The Dynkin diagram (5.25), gg—20—2 # —1, N # 4
The Nichols algebra By is generated by (x;);er with defining relations
Xg-26-20 = 0; Xijix1 =0, ie€lpo—1T;
xij=0, i<j—=1,0-=2; [xg-ti+1),xile =0, ie€lg_3NJ;
2 . N q (5.34)
xi =0, iel; x,* =0, ae0y;
x0-20) = qo—20-1(1 — gHx9_1x0-20 — qo—10(1 + ¢~ ")[xo_20, Xo—11c-
If N =00, ie. q ¢ Goo, then we omit the relations x,iv“ =0,a € (’)i.
5.3.18 The Dynkin diagram (5.25), gg—20—2 # —1, N =4
The Nichols algebra By is generated by (x;);er with defining relations
Xiji+1 =0, i€lpo—I [xi-1ivn,xile =0, ie€lp_3NIT;
xX0—20-20 =0; xj=0, i<j—10-2;
5.35
xi2=0, iel; xollv"‘z , oeeOi; ( )

x0-20) = qo—20-1(1 — gH)x9_1x9-20 — qo—10(1 + ¢~ ") [xo_20. Xo—11c-
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5.3.19 The Dynkin diagram (5.25), gy—29—2 = —1, N # 4

The Nichols algebra By is generated by (x;);ecr with defining relations

[x9—30-26, X0-2]c = 0; Xjij+1 =0, ielprnd;
xj=0, i<j—1,60-2; [xG-1i41),%ile=0, i€lp3NJ;

5.36
xl-2:O, iel; xév": ( )

, a e 0l;

x0-20) = qo—20—1(1 — ¢*)xo-1%9-20 — qo—10(1 + ¢~ [x9-20, X9—1]c-
If N =00, ie. g ¢ Goo, then we omit the relations xé\,“ =0,0 € Oi.

5.3.20 The Dynkin diagram (5.25), qg—20—2 = —1, N =4

The Nichols algebra By is generated by (x;);er with defining relations

Xijix1 =0, i€lpor—J; x;=0, i<j—1,0-2;
[x6—36—26, X6—2]c = 0; [xXi-1i+1), Xile =0, ielp_3NJ;

5.37
xX2=0, iel; x =0, ae0f; -7

X(0—20) = 2q0—20—1%0—1X0—20 — qo—10(1 + g~ xXo—20, Xo—1]-
5.3.21 The Dynkin diagram (5.26), qg—29—2 # —1, N # 4

The Nichols algebra By is generated by (x;);er with defining relations

Xijii+1 =0, i € g2 — I x0-20-20 =0; xg_19-19—2 = 0;
xij=0,i<j—-10-2 xg—19 = 0; Xggo—2 = 05 (5.38)

[xi-1i+1), xile =0, i €elp_3NJ; x,~2 =0,iel; xév‘* =0, o€ Oi.
If N =00, i.e. g ¢ Goo, then we omit the last set of relations.

5.3.22 The Dynkin diagram (5.26), gy—29—2 # —1, N =4

The Nichols algebra By is generated by (x;);ecr with defining relations

Xp06—2 = 0; Xjij+1 =0, ielyg_r—TI;
Xg—26-20 = 0; [xXi-1i+1). Xile =0, ielp_3NJ;
. . (5.39)
Xg—10-10—2 = 0; x;; =0, i<j—1,60-2;

xg_19 = 0; xiz =0, iel; xév" =0, ae Oj_.
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5.3.23 The Dynkin diagram (5.26), gy—29—2 = —1, N # 4

The Nichols algebra By is generated by (x;);ecr with defining relations

Xiij+1 =0, i €p2 —I; Xp09—2 = 0; Xo—16—16—2 = 0;
[xi—1itn, xile =0, i €lp 2 NT; x9-19 =0; [x6-36-26,X0—2]c = 0;
xij=0,i<j—16-2 xf=0,iel; xv=0 aec0].
(5.40)
If N =00, ie. q ¢ Goo, then we omit the last set of relations.
5.3.24 The Dynkin diagram (5.26), gg—20—2 = —1, N =4
The Nichols algebra By is generated by (x;);er with defining relations
xp—16 = 0; xij =0, i<j—1,6-2;
[x6—30-26,X0-2lc = 0;  [x@-1i+1), Xile =0, i€lpoNJ; (5.41)
Xggog—2 = 0; Xiji+1 =0, ielypr—1; '
Xg—10—10-2 = 0; =0, iel; xle =0, a e 0.

5.3.25 The associated Lie algebra and s

If N is odd (respectively even), then the corresponding Lie algebrais of type D x Cy—;
(respectively D; x Bg_ ;). We present 7 for each generalized Dynkin diagram.

e For (5.23),

A=Y aij+ Y. (N=Daj+ Y (M—=1(is1+dis)

i<jely, i<jely, i€ly,
a;j odd Qjj even ojp—1 even
+ Y (@wetaip)t+ Y (N =D +ajo1).
i<jelp-, i<jely_y,
;i1 odd ®ij—1 even

e The expression of s for (5.24) follows from the previous case by changing the
numeration of the diagram by 6 — 1 <— 6.
e For (5.25) or (5.26),

A= Y i+ Y (N=Dajj+ Y (N=1D(cig-1+a)

i<jely, i<jely, i€ly_o,
ajj odd a;j even ajg—1 odd
+ ) (@pata)+ Y (g +ajo)
i€lp—2, i<jelyg_a,
oig—2 even ojj—1 odd
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+ ) (V= Diwie+aj-2)+ Y (M= e +aig-).

i<jelp—a, iellp_s,
Q;j—1 even ajg—1 odd

5.3.26 Example D4 2

Here a3 2 = {{2}, {1, 3}, I3}. We exemplify the incarnation when j = 6 — j in the
case § =4, j = 2. Here is the basic datum:

2o 2 3,0 1 ({1.3%Lo
° ° °

3 3

({1.3Ld) 1 () 2 (@29
L] L [

4 4

@20 2 @GO 1 ({L3LO)
° ° o .

To describe the incarnation, we need the matrices (q(i))ie]k, from left to right and from
up to down:

a' g -1q' q q% ¢ gt g 1 g7 g 1oqg g g -1 g% 4
O —o——o0—— 0, oO—o0——o0— 0, O—— 0 — o0 — 0,
-1 -1 q!
() (o) (o)
B P 1 2
q q q
1 gt g q' 1 g -1 q'a S -1
(o) (o) o, o) (o) o, g q 01 4 qo .
Now, this is the incarnation:
q® ) q@ | q®
[ ] [ ] [ ]
3 3
q@ 1 q® 5 q®
[ ] [ ] [ ]
4 4

sa@™) 2 su@®) 1 s@®)
° ° o .
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5.4 Type D(2, 1; )

Here, g, r,s # 1,qrs = 1.D(2, 1; a), « # 0, —1, is a Lie superalgebra of superdi-
mension 9|8 [57, Proposition 2.5.6]. There exist 4 pairs (A, p) of (families of) matrices
and parity vectors as in Sect. 2.8 such that the corresponding contragredient Lie super-
algebra is isomorphic to D(2, 1; «).

5.4.1 Basic datum and root system

The basic datum (X, p), where X = {a;: j € I4}; and the bundle (C%/) ;<r, of Cartan
matrices are described by the following diagram:

A3

°

aj

2

A(l)
s12(A3) 1 2 3 523(A3)
° ° ° .

ar az as

Here the numeration of A3 is as in (4.2) while Agl) is as in (3.11) and below. Using
the notation (3.1), the bundle of root sets is the following:

A% ={1,12,123,1223,2,23,3}, A% =spp(AY),
AP ={1,12,13,123,2,23,3), A% = sx3(AY).

We denote this generalized root system by D(2, 1).

5.4.2 Weyl groupoid
The isotropy group at a; € X' is
Wiar) = (51", 63" c3516362, 651) = Z/2 x Z/2 x Z/2 < GL(Z").

5.4.3 Lie superalgebras realizing this generalized root system

To describe the incarnation in the setting of Lie superalgebras, we need parity vectors
p=(1,—1,1),p = (-1, -1, —1) € G3, and matrices

2-10 0 1 —1—a
D@:=|10a], D):= 1 0 o , o #{0,—1}.
0-12 l+a —« 0
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Let o # {0, —1}. The assignment

ay — (D(ot),p), azv—>s12(D(—1—a),p),

az — (D’ (o), P/), a4 —> 523 (1) (_1 _ a—l) ’ p) 7 (5.42)

provides an isomorphism of generalized root systems, cf. Sect. 2.8. Moreover, the Lie
superalgebras associated to (D (&), p), (D (B) , p) if and only if

peloa® —+a® —a+aH* ]
5.4.4 Incarnation

Here is an incarnation of D(2, 1):

q -1 ' r q -1 s
aj+—> o o o, a+— o o o,
2 3 1 3
r r_l —1 v71 N
a3z —— aqg —— o (0] o .
3 3 1 (5.43)

—1
o I 4
3
7N
—1 q —1
o o

We set N = ord g (as always), M = ordr, L = ord s. Also,

x123,2 1= [x123, x2]c.
5.4.5 The generalized Dynkin diagram (5.43 a), q,r,s # —1

The set

ny_ny n3 ng ny
{x3 X53%,° x1232x123x12 1710<n <M,0<n4 <L,0<n7<N,

0 <np,n3, ns,ng < 2} .
is a PBW-basis of Bq. If N, M, L < oo, then
dim By = 2*LMN.
If exactly two, respectively all, of N, L, M are oo, then

GK-dim B4 = 2, respectively 3.
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The set of positive Cartan roots is (’)fL = {1, 1223, 3}. The Nichols algebra By is
generated by (x;);er, with defining relations

N . 2 .M . L )
xp =0; xy=0; x37 =07 xpp3,=0; (5.44)
x112=0; x3320=0; x;3=0.

If N =00, ie. q ¢ G, respectively L = 0o, M = 00, then we omit the relation

where it appears as exponent.
The degree of the integral is 7 = (L + N)oy + 2L 4+ 2)ar + (L + M)a3.

5.4.6 The generalized Dynkin diagram (5.43 a), q = —1,r,s # —1

The Nichols algebra By is generated by (x;);cr; with defining relations

2 . 2 . M . L .
xl - O, XZ - O, X3 == O, x123’2 - 0, (5 45)

If L = oo, respectively M = oo, then we omit the relation where it appears as

exponent. The PBW basis, the dimension, the GK-dimension, the set of Cartan roots
and s are as in Sect. 5.4.5.

5.4.7 The generalized Dynkin diagrams (5.43 b and d)

These diagrams are of the shape of (5.43 a) but with s interchanged with g, respectively
with 7. Hence the corresponding Nichols algebras are as in Sects. 5.4.5 and 5.4.6.

5.4.8 The generalized Dynkin diagram (5.43 ¢)

The set

ny_np_n3 n4 ns_ne njy
{x3 X53%,°X193X 13X 12X [0 <ny <M,0<n¢<L,0=<ns <N,

0<ni,n3, ng,ng < 2}.
is a PBW-basis of B,. The dimension and the GK-dimension are as in Sect. 5.4.5.
The set of positive Cartan roots is (’)_c'|r = {12, 13, 23}. The Nichols algebra B is
generated by (x;);er, with defining relations
x12=0; x22=0; x32=0;

XN =0 =0 xby = 0; (5.46)

x13) — ———[x13, x2]c — q12(1 — $)x2x13 = 0.
7 =) ¢
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If N =o00,i.e. g ¢ G, respectively L = co, M = oo, then we omit the relation
where it appears as exponent. The degree of the integral is

A= (L + N)ay + (L + M)ay + (M + N)as.
5.4.9 The associated Lie algebra

This is of type A1 x A X Aj.

5.5 Type F(4)
Here N > 3. F(4) is a Lie superalgebra of superdimension 24|16 [57, Proposition

2.5.6]. There exist 6 pairs (A, p) of matrices and parity vectors as in Sect. 2.8 such
that the corresponding contragredient Lie superalgebra is isomorphic to F(4).

5.5.1 Basic datum and root system

Below, A4, Ca, F4 and T are numbered as in (4.2), (4.15), (4.35) and (3.11), respec-
tively. Also, we denote

ko = (14)(23), k1 = (1234), k> = (234) € Su.

The basic datum and the bundle of Cartan matrices are described the following
diagram, that we call F(4):

k2(C4)

°

ag

4
ko(Fa) 4 Ay 3 oT 2 sRT) 1 xi1(Ag)
° ° ° ° ° .
aj az as ay as

Using the notation (3.1), the bundle of root sets is the following:

AY = {1, 12,2, 123, 122321232, 23, 232, 3, 1223%4, 122324, 123%4, 23%4, 1223342,
1234, 234, 34, 4} :

AP = {1, 12,2, 123,23, 3, 122334, 122324, 12324, 2324, 1223342 1234, 1223242,
123242, 234,23%42 34,4},

A = {1, 12,2,123,23,3, 12234, 1224, 1234, 1273242 234, 122347, 34, 12347,
124,2342, 24, 4] ,

A =513 ([1 12,2,1273,123, 12732, 23, 3, 1227324, 123324, 1223%4, 12734, 1234,
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124,234,24,34,4})

4% =y ({1,12,2,123,23,3,1223%, 122324, 12033402, 12324, 1293942, 1223442,
2324, 12233421234, 234, 34, 4]) ,

AP =k ([1 12,122,2,1223,123, 23, 3, 1223324, 123324, 122324, 123%4, 12734,

1234, 2324, 234, 34, 4}) .

5.5.2 Weyl groupoid

The isotropy group ata; € X' is
Wiar) = (5", 65", 63", 64" s362616461626364) = W (B3) x Z/2 < GL(Z").

5.5.3 Lie superalgebras realizing this generalized root system

To describe the incarnation in the setting of Lie superalgebras, we need parity vectors
py asin (5.6), J C I, and matrices

-10 -100 2151(2)?
_[(-12-10 _(-12-10 _ |-
Al_(0221)’ Ay = 0201>’ A3=10201]
0 0 00 10 0 —1-12
20 %7 3302_% %3 %%
20 —2 1 -2 -12 —
As=1|05-172 0>’ As=\o05 2 0 | A6—(0—120>
3100 3-10 0 -10 02
The assignment
a; — (A1, pw), ay — (A2, pp.4y). a3 +— (A3, pp.3)).

(5.47)
as—> (A4, pu24y). as+—> (As,puy).  as — (Ae. Pi4y).

provides an isomorphism of generalized root systems, cf. Sect. 2.8.
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5.5.4 Incarnation

Here it is:
2 q—2 qZ q—2 q q—l -1 2 q—Z 2 q—2 -1 q -1
ay—— o [¢] o ] aj)—— o o ] o
2 3 4 2 3 4
q -1
az — o as — o
4 4
—1 -3
. \ q/ g
¢ ¢72 -1 ¢* -1 17 ¢* -1 ¢ ¢
o) o] (o) [e] o) o]
1 2 3 1 2 3
S8 1 g2 @ gt g S B L1 g g
as+——> o o o o ag+H——> o© o o o .
2 3 4 2 3
(5.48)

5.5.5 PBW-basis and (GK-)dimension

Notice that the roots in each Ai" , i € I, are ordered from left to right, justifying the
notation f, ..., Bis.
The root vectors xg, are described as in Remark 2.14. Thus

{xg;SxZ:; .. xgjxgll |0 <ng < Nﬁk} .

is a PBW-basis of Bq. Let L = ord q3, M = ord qz. If N < oo, then
dim By = 28LM>N°.
If N = oo (that is, if ¢ is not a root of unity), then GK-dim B4 = 10.

5.5.6 The generalized Dynkin diagram (5.48 a), N > 4

The Nichols algebra By is generated by (x;);er, with defining relations

x3=0; x14=0; x24=0
x112=0; x221=0; x223=0; x333 =0; (5.49)

x3332 = 0; xf =0; xfxv‘* =0, xe Oi;

where O = {1, 12,2,123,12232,1232,23,23%,3, 1223342} If N = o0, i.e. ¢ ¢
Goo, then we omit the last set of relations. Here

a=(L+4M + N —2)a; + 2L +6M + 2N — )
+@BL+6M+3N)az + (2L 4 6)oy
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5.5.7 The generalized Dynkin diagram (5.48 a), N = 4

The Nichols algebra By is generated by (x;);c1, with defining relations
x13=0; x14=0; [xq3),x2]c =0;
x334 =05 x24 =0; [x23, x04lc =0; (5.50)
x3332 = 0; xé% =0; xév‘l =0, o€ Oi;

here, (’)i, s are as in Sect. 5.5.6.
5.5.8 The generalized Dynkin diagram (5.48 b), N > 4
The Nichols algebra By is generated by (x;);cr, with defining relations

x3=0; x14=0; x4=0; x112=0;
x221 =0; x223 =0; [[x43, x432]c, x3]c = 0; (5.51)
x32=0; xf:O; xév‘Y:O,ae(’)i;

where O = {1, 12,2, 122334, 1234, 1223242, 123242, 234, 23242 34}. If N = o0,
i.e. ¢ ¢ Goo, then we omit the last set of relations. Here

A= (L+4M + N —2)a; + QL + 6M + 2N — 2)a»
+ 3L +6M +3N)az + (L + 6M + 3N — 4)ay.

5.5.9 The generalized Dynkin diagram (5.48 b), N = 4
The Nichols algebra By is generated by (x;);ey, with defining relations

x13=0; x14=0; [xq3),x2]c=0;
2

X4 =0; x33=0; [[x43, x432]c, x3]c = 0; (5.52)
3=0; x}=0; x)e=0 ac0l;

here, Oi, s are as in Sect. 5.5.8.

5.5.10 The generalized Dynkin diagram (5.48 ¢), N > 4

The Nichols algebra By is generated by (x;);ey, with defining relations

x3=0; x14=0; x112=0;
X442 =05 x443 =0;  [x(13), x2]c = 0;
x22=0; x%:O; x,ﬁ’“:O,ae(’)i;

X4y — q3aqlx, 31 — q23(1 — g7 Hx3x04 = 0; (5.53)
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where O] = {1, 123,23, 1224, 1234, 1223242, 234, 1234?,234? 4} If N = o0, i.e.
q ¢ Goo, then we omit the relations xév “=0,x € Oi. Here

A= (L+4M + N —2)a; + QL + 6M + 2N — 2)a
+(6M + 2N — 4)a3 + (L + 6M + 3N — 4)ay.

5.5.11 The generalized Dynkin diagram (5.48 ¢), N = 4

The Nichols algebra By is generated by (x;);e1, with defining relations

x3=0; x14=0; x{,=0;
x442 =05 x443 =07 [x(13), x2]c = 0;
x%:O; x%:O; xév"‘:O,ani;

x4y — 349124, x3]c — q23(1 — ¢~ )x3x04 = 0; (5.54)
here, Oi, s are as in Sect. 5.5.10.

5.5.12 The generalized Dynkin diagram (5.48 d), N > 4

The Nichols algebra By is generated by (x;);ey, with defining relations

x13=0; x14=0; [x124,x2]c=0;
x112=0; x3=0; [[x32, %31l x2]c = 0;
=0 x3=0; x}v=0,ae0l;
q° 3
= [x24, x3]c — g23(1 — g 7)x3x24 = 0; (5.55)

X(24) tq34

where O = {1,123, 12232, 23, 1223324, 123324, 12234, 124,24, 34}. If N = oo,
i.e. ¢ ¢ Goo, then we omit the relations x(iV“ =0,a € Oi. Here

= (6M +2N —4)a; + (10M + 4N — 6)ar
+(L+6M+3N —4)az+ (L+4M + N — 2)ay.

5.5.13 The generalized Dynkin diagram (5.48 d), N = 4

The Nichols algebra By is generated by (x;);er, with defining relations

x13=0; x14=0; [x124,x2]c =0;
2 . 2 ) :
xip=0;  x;=0; [[x32,x321]c, x2]c =0;

=0, x3=0; xM=0, ae0l;
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3

— 22 [x24. x3]e — @231 — g *)x3x24 = 0; (5.56)

X4) + q34

here, Oi, s are as in Sect. 5.5.12.

5.5.14 The generalized Dynkin diagram (5.48 ¢), N # 4, 6

The Nichols algebra By is generated by (x;);er, with defining relations

x3=0; xu=0; xu=0 xin2=0;
x21=0; x23=0;  [[[xa32, x3]e, [xa321, X3]e)e > x32], = 03 (5.57)

X443 = 0; x% =0; x(iV“ =0, o € Oi;

where OF = {1, 12,2, 122324, 12233442, 12324, 1233442, 1223442 2324 4}.If N =
00, i.e. ¢ ¢ G, then we omit the last set of relations. Here

7= (6M + 2N — day + (10M + 4N — 6)ar
+(12M + 6N — 6)a3 + (L + 6M + 3N — 4)ay.

5.5.15 The generalized Dynkin diagram (5.48 ¢), N = 6
The Nichols algebra By is generated by (x;);er, with defining relations
x3=0; x14=0; x4=0; x112=0;

x221 =05 x203 =0;  [[[x432, x3]¢, [x4321, X3]c]es X321, = O; (5.58)

X3, =0, x3=0; xle =0, a e 0F;

here, Oi, s are as in Sect. 5.5.17.

5.5.16 The generalized Dynkin diagram (5.48 e¢), N = 4

The Nichols algebra By is generated by (x;);er, with defining relations
x13=0; x14=0; [xa3),x2]c=0;
x4 =05 x443 =05 [[[x432, x3]c, [x4321, X3]c]e, X321 = 0; (5.59)
x%3 =0; x% =0; x(iv“ =0, e Oi;

here, Oi, s are as in Sect. 5.5.14.
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5.5.17 The generalized Dynkin diagram (5.48 f), N # 4,6

The Nichols algebra By is generated by (x;);cr, with defining relations

x3=0;  x14=0; x4=0;
x112=0; x221 =0; x203=0;
X443 = 0; x32 =0; x(iv‘x =0, e (’)i;

[[xX(14), %2]es X31e — g23(q° — @l[x 12y, X3]e, ¥2]e = 0 (5.60)

where O = {1,12,122,2, 1223324, 123324, 122324, 12324, 23?4, 4}. If N = oo,
i.e. ¢ ¢ Goo, then we omit the relations X =0, a€ (’)i. Here

7= (6M + 2N — 4)a; + (10M + 4N — 6)az
+(8M + 2N —2)a3 + (L +4M + N — 2)ay.

5.5.18 The generalized Dynkin diagram (5.48 f), N = 6
The Nichols algebra By is generated by (x;);er, with defining relations

x3=0;  x14=0; x4=0;
x112=0; x201=0; x23=0;
X3, =0; =0 xMe=0 ae ol;

[[xX(14), X2]es X3)e — g23(q* — @[[x(14), X3]e, X2]e = 0; (5.61)
here, Oi, s are as in Sect. 5.5.17.

5.5.19 The generalized Dynkin diagram (5.48 f), N = 4

The Nichols algebra By is generated by (x;);cr, with defining relations

x13 =0; x14=0; x4 =0;
x23=0; x2201 =0; [x12,x13)lc = 0;
x443 = 0; x% =0; xé\"’ =0, e Oi;
[x 14y, x21e, ¥31e — 923(q% — )l[x(14). X3, X21e = O; (5.62)

here, Oi, s are as in Sect. 5.5.17.

5.5.20 The associated Lie algebra

This is of type A x Bs.
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5.6 Type G(3)

Here N > 3. G(3) is a Lie superalgebra (over a field of characteristic # 2, 3) of
superdimension 17[14 [57, Proposition 2.5.6]. There exist 4 pairs (A, p) of matri-
ces and parity vectors as in Sect. 2.8 such that the corresponding contragredient Lie
superalgebra is isomorphic to G(3).

5.6.1 Basic datum and root system

Below, A3, B3, Df) and T® are numbered as in (4.2), (4.7), (3.8) and (3.12), respec-
tively. Also, we denote k = (123) € S3. The basic datum and the bundle of Cartan
matrices are described by the following diagram, that we call G(3):

®
Dy 1 A3 2 T® 3 «k(B3)
[ ] [ ] [ ] o .
ap ar a3 ag

Using the notation (3.1), the bundle of root sets is the following:

A = 11,12,123, 1273, 1273, 12337, 12432 2,23, 223, 3, 2%3, 2332} ,

az
A+

{
[1, 12,23, 1223, 12233, 122332, 132432, 2, 123, 12223, 3, 13233, 132332} ,
AY = {12, 1,3,13, 123, 17232, 1323%, 2, 123, 1723, 23, 1323, 132232} :
A% = {1232, 13,3, 1, 173, 1723, 1°232, 23, 123, 17232, 2, 1323%, 132233} :
5.6.2 Weyl groupoid
The isotropy group at a; € X' is
Wiar) = (51" 626361636261, 65", 631) = Z/2 x W(G»).

5.6.3 Lie superalgebras realizing this generalized root system

To describe the incarnation in the setting of Lie superalgebras, we need parity vectors
py asin (5.6), J C I, and matrices

A (01503) A (?603) A (
=\ a7 ) 2=\ ) 3=

The assignment

—on
wo
(I
SRS
~—

ar— (ALpy),  a e (A2, puoy).

(5.63)
a3+ (A3, pp3y). as > (As,p(3).

provides an isomorphism of generalized root systems, cf. Sect. 2.8.
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5.6.4 Incarnation

Here it is:
-1 ¢7' q¢ 4¢3 ¢ -1 ¢ -1 q3% ¢
a—— o o o, ayt+—— o o o,
1 2 3 2 3
_ R R .
a as—> o o o.
3 2 (5.64)

1
3 o
3
q q! ~1
o o,
1 2

5.6.5 PBW-basis and (GK-)dimension

Notice that the roots in each Afﬁ, i € I, are ordered from left to right, justifying the
notation B, ..., B13.
The root vectors xg, are described as in Remark 2.14. Thus

niz ni ny _nj
{xﬂwxﬁl2 CXp X |10 <ni < N,Bk} .

is a PBW-basis of By. Let L = ord —q, M = ord ¢>. If N < oo, then
dim Bg = 2°LM3 N,

If N = oo (that is, if ¢ is not a root of unity), then GK-dim B4 = 7.

5.6.6 The generalized Dynkin diagram (5.64 a), N # 4,6

The Nichols algebra By is generated by (x;);cr; with defining relations
x13=0; x21=0; x332=0;

(5.65)
x03 =0 xf=0 xJe=0 ae0l;

where O] = {2,3,23,223,233,1223,233%}. If N = 00, i.e. ¢ ¢ Goo, then we omit
the last set of relations. Here

A= (L 4+5a; +Q2L+6M +4N)ar + (L +4M + 2N — Das.
5.6.7 The generalized Dynkin diagram (5.64 a), N = 6
The Nichols algebra By is generated by (x;);cr; with defining relations

x13=0; x21=0; [x12,xa3]c =0;
) e (5.66)
x003=0; x7=0; x,*=0, a0
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here, (’)i, s are as in Sect. 5.6.6.
5.6.8 The generalized Dynkin diagram (5.64 a), N = 4
The Nichols algebra By is generated by (x;);cr; with defining relations

x13=0; x221 =0; [[[x@3),x2]c, x2]c, x2]c = 05

(5.67)
x332 = 0; x% =0; xly“ =0, ae (’)i;
here, Oi, s are as in Sect. 5.6.6.
5.6.9 The generalized Dynkin diagram (5.64 b), N # 6
The Nichols algebra By is generated by (x;);er; With defining relations
x13=0; x332=0; [[x12,[x12, x13)lcle, x21c = 0;
(I9eder A2l (5.68)

x%:O; x%:(); xOIlV“ZO,OlEOj_;

where O] = (3, 12, 123, 1223, 12223, 13233, 132332} If N = 0, i.e. ¢ ¢ Goo, then
we omit the last set of relations. Here

g=(L+6M+4N —3)a; + 2L +6M +4N)ax + (L +4M + 2N — Das.
5.6.10 The generalized Dynkin diagram (5.64 b), N = 6

The Nichols algebra By is generated by (x;);er; With defining relations

x13 =0; x§3 =0; [[x12,[x12, x(13)lc]es x2]c = 0;

x% =0; x% =0; xév"‘ =0, ae Oi; (5.69)
here, Oi, s are as in Sect. 5.6.9.
5.6.11 The generalized Dynkin diagram (5.64 c), N # 6
The Nichols algebra By is generated by (x;);e1; with defining relations
x3=0; x332=0; x1512=0; x3=0; xNe =0, a e o,
[x1,[x123, x2]cle = qlliqi; [x12. 1231 = (¢ — ¢ Dqr2q13x123%12: 670

where O = (1,3, 12,123, 12223, 13233, 132332} If N = 00, i.e. ¢ ¢ Goo, then we
omit the relations xol,v *=0,a € (’)i. Here

A= (L+6M +4N —3)a; + (L +4M + 2N — Das + 4M + 2N — 2)as.
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5.6.12 The generalized Dynkin diagram (5.64 ¢), N = 6

The Nichols algebra By is generated by (x;);cr; with defining relations

x13=0; x33=0; [x112, %12l =0; x3=0; x)*=0, « € 0;

o
_ 412932

_ (5.71)
[x1,[x123, X2]¢]e = [x12, x123]c — (g
1+g¢

() .
—q " 7)q12913X123X12;

here, Oi, s are as in Sect. 5.6.11.

5.6.13 The generalized Dynkin diagram (5.64 d)

The Nichols algebra By is generated by (x;);e1; with defining relations

X2 =0; x3=0; x3=0; xév"‘zo,ae(’)i;

1= g3 \ (5.72)
g [x13, x2]c — q12(1 — g7 )x2x13 = 0;

x113=0; xq3) + a7 %q2

where O = {1, 12,23, 123, 1223, 1323, 132232} If N = 00, i.e. ¢ ¢ Goo, then we
omit the relations xé,v “=0,a € Oj_. Here

g= (L +6M +4N — 3)as + (6M + 2N)az + (4M + 2N — 2)as.

5.6.14 The associated Lie algebra

This is of type A1 x G».

6 Standard type
6.1 Standard type By j,0 > 2, j € Ip_

Here ¢ € Gj.

6.1.1 Basic datum and root system

The basic datum is (By,;, o) and the root system is B(j|60 — j), j € Ip—1 as in
Sect. 5.2.2; hence the Weyl groupoid is as in Sect. 5.2.3. But we have new incarnations.
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6.1.2 Incarnation
The assignment

RIS
o

Ag_1 (=55 D) , 0¢17;
J 6.1)

Ap1(=¢; D) g , 0el.

gives an incarnation. Notice that albeit 6 is not a Cartan vertex, py = id.
6.1.3 PBW-basis and dimension

The root vectors are

Xaji = Xy = Xis iel,
xaij = Xij) = [xi7 xa(,’+|)j]6: 1< Je ]L
Xaig+ag = [Xayq, X0]lc, iely_q,
xo‘i0+0¢j6 = [xOl,'9+Ol(j+1)gaxj]C’ 1< Je HQ,],
cf. (2.11). Thus
ngg Me—16 ne—19 _1no—10—1 mi2 mie nig nii
{xe Xy 1o+ Xas 16%Xg 1 Koty - Xang tagy - Xagy X

|0 <nijj < Ny;; 0 <mj; < Nai9+aj9}
is a PBW-basis of B,. Hence
dim By = 200 =03/ =07,
6.1.4 Presentation
The set of positive Cartan roots is
Oi = {Ot,'j, aip +oirneii < j €l o even} . (6.2)
Assume that & = 2. Then O = {a;, a1 + 20} if ) is even, i.e. J = @, and Oi =0

if @y is odd, i.e. J = {1}.
The Nichols algebra By is generated by (x;);e1 with defining relations

xij =0, i<j-1 [xi—1i+1), xile = 0, iel;

Xiig+y =0, ie€lg_1—J; [xe000-1)0-2), X66-1)]c = 0; 63)
X,-2 =0, iel; [x000—1)» Xo(6-1)]c =0, 0—1el; '
x3=0; xgzo, ae(’)i.
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6.1.5 The associated Lie algebra and s

This is of type D; x Dy ;. In this case, the Weyl group of the associated Lie algebra
is isomorphic to a proper subgroup of the isotropy group of the Weyl groupoid. Here

g = Z aij + Z 505ij+2201i6

i<jelp-i, i<jelp_y, iely
a;j odd jj even
+ Z (aip +ajg) + E S(aio +ajo).
i<jely, i<jely,
a;j—1 odd ajj—1 even

6.2 Standard type G»
Here ¢ € Gj.
6.2.1 Basic datum

This is described by the diagram

6.2.2 Root system
The bundle of Cartan matrices (C%/) je, is constant: C“/ is the Cartan matrix of type

G as in (4.43) for any j € Is.
The bundle of root sets (A%/) jer, is constant:

AY = {Foay, £Gay + o), Qo + a2), =By + 2a2), () + a2), £an}.
6.2.3 Weyl groupoid

The isotropy group at a; € X is
W(a) = (¢ 2616261, 65") >~ Z/2 x Z/2 < GL(Z").
6.2.4 Incarnation

We assign the following Dynkin diagrams to a;, i € I3:

o. (6.4)
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6.2.5 The generalized Dynkin diagram (6.4 a)

The set
ny_ny
{xz X12X3a1+2a2)6112.x1112x1 [n1,ng4 €lo7, n2,ne €lp3, n3, ns € H0,1]

is a PBW-basis of B4. Hence dim By = 224282 = 4096.
The Nichols algebra B, is generated by (x;);er, with defining relations

xP=0; x01 =0 [X3012a0, x120e =0; x5 =0; x¥, =0. (6.5)

In this case, O = {2, 201 + o2} and 7 = 2601 + 200,.
6.2.6 The generalized Dynkin diagram (6.4 b)
The set

ny_ny_n3
[x2 x12x3a1+2a2x112x“12x1 S|ny, ns € lo7, na,neg € o3, ni,n3 € HO,I}

is a PBW-basis of B4. Hence dim B, = 224?82 = 4096.
The Nichols algebra B, is generated by (x;);er, with defining relations

12
xf =0; x% =0;  [x1, X3¢, 42w Jc + lq_—§x%12 =0 66)

x?z =0; xiguz =0.
In this case, O = {a1 + a2, 301 + a2}. and 7 = 400 + 200t5.

6.2.7 The generalized Dynkin diagram (6.4 c)

The set
XI X2 X3 xMoxT3 o x" |3, ng € lo.7, na,ng € g3, ny,ns €l
2 12430420 112 1112 1 3, 16 0,7, N2, N4 0,3, 11,15 0,1

is a PBW-basis of 4. Hence dim B, = 22478 = 4096.
The Nichols algebra By is generated by (x;);e1, with defining relations

x? =0; x11112 = 05 [X3042a5, X12]c = 05 ©67)

2 . 8
=0 X34,400, =0
In this case, O = {1, 31 + 202}, and 7 = 40c1 + 2200>.
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6.2.8 The associated Lie algebra
This is of type A1 x Aj.

Part I11. Arithmetic root systems: modular, UFO

7 Modular type, characteristic 2 or 3
7.1 Type wk(4)

Here & =4, g # *1. Let IF be a field of characteristic 2, « € F — F, and

01 0 O
1 0 1 0 4xd
A=lo o« o 1"
0 01 0
Let tot(4,¢) = g(A) be the corresponding contragredient Lie algebra. Then
dim €4, o) = 34 [59]. Notice that there are 4 other matrices A’ for which

we(4, a) >~ g(A’). Here is the root system wk(4) of to€(4, ), see [3] for details.

7.1.1 Basic datum and root system

Below, A4 and | T are numbered as in (4.2) and (3.11), respectively. The basic datum
and the bundle of Cartan matrices are described by the following diagram:

Aq 3 1 T 2 s13017) 1 K1(Ag)
° ° —_— ° _— °
ai ap as aq
4| 4|
s34(Ag) k2(Ag)
° °
as ag
2| 2|
k3(Ag) 1 k4 (1T) 4 524(1T) 3 524(Ag)
° Emm— ° _— ° _— °
az ag ag aj

Using the notation (3.1), the bundle of root sets is the following:

A9 ={1,12,2,123,23, 3, 1223%4,1223%4, 123%4, 23%4, 1223342 1234, 234, 34, 4},

A ={1,12,2,123,23,3, 12234, 12%4, 1234, 234, 127347, 34,124, 24, 4},
AY ={1,12,2,12%3,123, 23, 3, 1223%4, 123%4, 23%4, 12234, 1234, 234, 34, 4},
a a a a a a a
P=s3(48), AY =wa(aY), AP =x(a}), AV =w(aY),
AL =g (AD), ALY =s54(A). AL =s0(AY).

>
8
|
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7.1.2 Weyl groupoid
The isotropy group ata; € X' is
Wiar) = (51", 63" 631 626164616263, 64') = W(A2) x W(Ay).
7.1.3 Incarnation
To describe it, we need the matrices (q)) iels corresponding to the following Dynkin

diagrams, from left to right and from up to down (also denoted below as a,..., e as
customary).

9 ¢ 9 ¢ -1 —q —q —q -4 -9 —q¢ -14 ¢
) (o) o o o
g ¢' -1 -1 -1 —-q —q7!
o) o o]
1 1 (7.1)
o) o
—1/ ‘ -1 / ‘
—q q
g ¢' -17 ¢ -1 e B e e . |
o o o (¢} o o
Now, this is the incarnation:
1 4 4 1
ar — q, ar — q¥, az > si3(d?),  ar > k@?),

o,

as — s34(q ag > 12(q?),

a7 > k3(?),  ag> ka@?), a9 > 5240, aio > s24(9?).
Weset N = ordg, M = ord —g L.

7.1.4 PBW-basis and (GK-)dimension

Notice that the roots in each Aﬁ, i € Iy, are ordered from left to right, justifying the

notation S, ..., Bis.
The root vectors xg, are described as in Remark 2.14. Thus

[l xpagl 10 < me < Ny |
is a PBW-basis of By. If N < oo, then
dim B = 2 M3 N°.

If N = oo (that is, if g is not a root of unity), then GK-dim By = 6.
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7.1.5 The Dynkin diagram (7.1 a)

The Nichols algebra By is generated by (x;);c1, with defining relations

x% =0; x3=0; x14=0; x4=0;
x12=0; x01=0; x)=0, «e{l,2 12} (7.2)
03 =0; x43=0; xM =0, «ae{4 1223%4,1223%4%),

If N = o0, ie. g ¢ Gy, then we omit the relations xév = 0, x‘i” = (. Here,
0% ={1,2,12,4,1223%4,1223%4?} and the degree of the integral is

g=(2M +2N)aj + (4M + 2N + 2)az + (6M + 6)a3 + (4M + 2)aua.

7.1.6 The Dynkin diagram (7.1 b)

This diagram is of the shape of (7.1 a) but with —g ~! instead of ¢. Thus the information

on the corresponding Nichols algebra is analogous to Sect. 7.1.5.

7.1.7 The Dynkin diagram (7.1 c)

The Nichols algebra By is generated by (x;);er, with defining relations
x5=0. x3=00 x14=0; xp4=0;
=0 x3=0 xN=0, aec{l,23%4,123%4);
X1 =0; x43=0; xM =0, «eci4, 1223, 12%34); (7.3)

1
[[x14y, x21¢, x3]1c — q23

+
1 [[x14), x3]¢, x2]c = 0.
l—¢q

If N = oo, ie. g ¢ Goo, then we omit the relations x = 0, x = 0. Here,
O = {1,234, 123%4, 4, 1223, 12234} and the degree of the integral is

A= QM 4 2N)a; + 4M + 2N + 2)ar + QM + 4N + 2)a3 + M + 2N)ay.

7.1.8 The Dynkin diagram (7.1 d)

The Nichols algebra By is generated by (x;);ey, with defining relations

0;  [xu3y, x2]e =0;
0, «e{l,23,123)
0, o€ {34,12%4,12234%); (7.4)

x112 =0; x13 =0;

x% =0; x§4 =0;

Qng =
I

x32 =0; xf =0;
(1 +fI)Q43

> [x24, ¥3]c — q23(1 + ¢~ )x3x04 = 0.

X4y +
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If N = o0, ie. ¢ ¢ Goo, then we omit the relations xY = 0, x¥ = 0. Here,
O = {1,23,123, 34, 1224, 12234%} and the degree of the integral is

d=02M +2N)a; + (4M + 2N + 2)ar + M + 2N)az + (AM + 2)as.
7.1.9 The Dynkin diagram (7.1 e)

This diagram is of the shape of (7.1 d) but with —g !

is as in Sect. 7.1.8.

instead of g. Thus the information

7.1.10 The associated Lie algebra

This is of type Ay x Aj.

7.2 Type br(2)

Here 0 =2, ¢ € G3, g ¢ G3. Let FF be a field of characteristic 3, a € F — F3,

_(2-1 . 2~ 2x2
A_<a 2)’ A_<—1—a 2)61F

Let br(2, a) = g(A) =~ g(A’), the contragredient Lie algebras corresponding to A, A’.
Then dim br(2, a) = 10 [29]. We describe now the root system br(2) of bt(2, a), see
[3] for details.

7.2.1 Basic datum and root system

Below, B; is numbered as in (4.7). The basic datum and the bundle of Cartan matrices
are described by the diagram:

By 2 B 512 C.'z 1 C
- - o . A ——————o.

This is a standard Dynkin diagram, that might be called of type C3; indeed Br is not
isomorphic to B(1]|1). We include it here because of the relation with the modular Lie
algebra bt(2, a). The bundle of root sets (A%/) jer, is constant:

AY = {+ay, Qa1 + an), (o) + a2), Lar}.
7.2.2 Weyl groupoid

The isotropy group at a; € X is

Wiar) = (s1" s261, 65", ) ~ Z/2 x Z/2.
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7.2.3 Incarnation

We assign the following Dynkin diagrams to a;, i € I5:

' q ¢ ¢%q ¢q!
0] .

¢
aj—o o, a)t——o

(7.5)

The Dynkin diagram (7.5 b) has the same shape as (7.5 a) but with ¢q~ " instead of
q. Thus, we just discuss the latter.

7.2.4 PBW-basis and (GK-)dimension

We set N = ordg, M = ord {g~". The root vectors xp, are described as in Remark
2.14. Thus

ny_ny _n3y _n4
{x2 x{3x{7,x] |0§n3<M,O§n4<N,O§n1,n2<3}.

is a PBW-basis of By. If N < oo, then dim By = 3ZMN.If N = o0 (that is, if g is
not a root of unity), then GK-dim Bq =2.

7.2.5 Relations, g = —1
The Nichols algebra By is generated by (x;);e1, with defining relations

x? =0; x%z =0; x?lz =0, x22 =0; [x112,x12]c =0. (7.6)
Here, Oi = {201 4+ a2, oz} and the degree of the integral is

= 1301 + 9as.
7.2.6 Relations, g # —1
The Nichols algebra By is generated by (x;);c1, with defining relations
=0 x3,=0; xM, =0, xN=0; xp=0. (7.7)

If N = oo, ie g ¢ Guo, then we omit the relations xé‘] = 0, vafz = 0. Here,
Oi = {201 + a2, a2} and the degree of the integral is

a=0QM+ N — Da; + (M + 3)ay.
7.2.7 The associated Lie algebra

This is of type A1 x Aj.
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7.3 Type bx(3)

Here 6 =3,¢ € G’9. Let IF be a field of characteristic 3 and

2 -1 0 2 -10
A=|-22 -1}, A=[-12 -1
010 01 0

Let br(3) = g(A) ~ g(A’), the contragredient Lie algebras corresponding to A, A’.
Then dim bt(3) = 29 [29]. We describe now the root system br(3) of br(3), see [3]
for details.

7.3.1 Basic datum and root system

Below, B3 and AE‘Z) are numbered as in (4.7) and (3.7), respectively. The basic datum
and the bundle of Cartan matrices are described by the following diagram:

2
By 3 t(AQ)
o———— @
ay a

Using the notation (3.1), the bundle of root sets is the following:
A = [1, 12,123, 122334, 12232, 12233 12234, 12334, 123%, 2, 232, 23, 3} :
A = {1,122,12,123%, 1232, 122%32,12%32,123, 123, 2,232, 23,3}
7.3.2 Weyl groupoid
The isotropy group at a; € X' is
Wiar) = (51", 65", 53" s253) = W(B).
7.3.3 Incarnation

We assign the following Dynkin diagrams to a;, i € Ip:

o~
~
o~
~
~
~

o~
~
~

IS
~

ap o a | o o o (7.8)

7.3.4 PBW-basis and dimension
Notice that the roots in each A‘f, i € Ip, are ordered from left to right, justifying the
notation f, ..., B13.

The root vectors xg, are described as in Remark 2.14. Thus

{ niz _nis ny_ni

Xg i Xpg o Xg Xg |0 <mp < N/gk} .
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is a PBW-basis of B,. Hence dim B, = 3499 = 322,

7.3.5 The Dynkin diagram (7.8 a)

The Nichols algebra By is generated by (x;);cr; with defining relations

x13=0; x112=0; x3=0; X332, X s x32]e = 0;
13 112 3 X [[x332, x3321]c, X32]c 79

x0210=0; x23=0; x , ae0f;

where O = (1,2, 12,232, 1232, 12232, 12234, 12334, 122334}, Here the degree of

the integral is
= 68a; + 1200 + 156¢3.

7.3.6 The Dynkin diagram (7.8 b)

The Nichols algebra By is generated by (x;);er; With defining relations

x3=0; x112=0; x01 =0; x23=0; x,=0, a€ o4, (7.10)
3 =0; (14 HMxas, x2le 131e = qa3llxa3), X31e, x2le;

where O = (1,2, 12, 122,232, 1232, 12232, 12332, 122332}, Here the degree of the
integral is
= 68a1 + 1200 + 88w3.

7.3.7 The associated Lie algebra

This is of type Bs3.

8 Super modular type, characteristic 3

In this Section F is a field of characteristic 3.

8.1 Type br3j(2; 3)

Here 6 =2, ¢ € Gg. Let

. 01 ’r 01 " __ 2 -1 2x2.
=) =(B) w=(G0) e

pz(_l’l)v p//=(—1,—1)€G%
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Let btj(2; 3) = g(A,p) ~ g(A’, p) >~ g(A”,p"), the contragredient Lie superalge-
bras corresponding to (A, p), (A’, p), (A”, p”). We know [29] that

sdim brj(2; 3) = 10]8.
We describe now the root system brj(2; 3) of btj(2; 3), see [3] for details.

8.1.1 Basic datum and root system

Below, Agl), C, and A;z) are numbered as in (3.2), (4.15) and (3.7), respectively. The
basic datum and the bundle of Cartan matrices are described by the following diagram:

(1) 2)
Ay 1 C2 2 A,

[ ] L J o .
ap ap as

Using the notation (3.1), the bundle of root sets is the following:

AL =112, P22,12,12%,2), AP = (1,172,122, 123, 12,2,
AP =(1,1%2, 12,172, 12,2}

8.1.2 Weyl groupoid
The isotropy group at a; € X is

W(a2) = (5126261, 537 6162) >~ Z/2 X /2.
8.1.3 Incarnation

We assign the following Dynkin diagrams to a;, i € I3:

o . (81

I%
o, a)t— o

8.1.4 PBW-basis and dimension
Notice that the roots in each Afﬁ, i € I3, are ordered from left to right, justifying the
notation B, ..., Be.

The root vectors xg, are described as in Remark 2.14. Thus

ne _ns_n4 _n3_npy _nj
{xﬁaxﬁsxﬁﬂﬂsxﬂﬂm 10 =m < Nﬁk} :

is a PBW-basis of 4. Hence dim By = 2?3%18% = 11664.
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8.1.5 The Dynkin diagram (8.1 a)
The Nichols algebra By is generated by (x;);c1, with defining relations

Cf]u 2.

18
— X7
1 é. 12

=00 13 =0 o v, xelde =
X2 =0; xi3=0.
Here Oj_ = {1, 12} and the degree of the integral is
a =420 + 25w;.
8.1.6 The Dynkin diagram (8.1 b)

The Nichols algebra By is generated by (x;);e1, with defining relations

18

3 ) 2 ) }
x1=0; x3=0; [x112, [x112, x12]e]lc = 05 Xm =0; x5=0.

Here Oi = {122, 12} and the degree of the integral is
= 03a; + 42a).
8.1.7 The Dynkin diagram (8.1 c)

The Nichols algebra By is generated by (x;);e1, with defining relations

=0; x% =0;  [x2,x12le=0;  x111112 = 0; xffz =0.
Here Oi = {1, 172} and the degree of the integral is
=631 + 23a7.

8.1.8 The associated Lie algebra

This is of type A} x Aj.

8.2 Type g(1, 6)

Here 6 =3, ¢ € G5 U Gg. Let

2 -1 0 2 -1 0
A=|-22 -2], A =|-12 —2| er3*3,
01 0 0 1 0

p=(1,—1,-1), p=(,1,-1)eG3.
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Let g(1,6) = g(A, p) =~ g(A’, p’), the contragredient Lie superalgebras correspond-
ing to (A, p), (A’,p’). Then sdim g(1,6) = 21|14 [29]. We describe now its root
system g(1, 6), see [3].

8.2.1 Basic datum and root system

Below, C3 and Cél) are numbered as in (4.15) and (3.5), respectively. The basic datum
and the bundle of Cartan matrices are described by the following diagram:

()
C3 3 ®)
————eo .
ay an

Using the notation (3.1), the bundle of root sets is the following:

A = (1,12, 17223, 123, 1223, 12232, 12337, 172332 122%37, 2,273, 23, 3},
AT =(1,12,12%,17223, 17233, 17243, 1233, 123, 122, 2,223, 23, 3}.

8.2.2 Weyl groupoid

The isotropy group at a; € X is

Wiar) = (s1", 65", 63" 6263) = W(C3).

8.2.3 Incarnation

We assign the following Dynkin diagrams to a;, i € I5:

o (8.5)

¢
o a)t— o

8.2.4 PBW-basis and dimension
Notice that the roots in each A‘_ﬁ, i € Ip, are ordered from left to right, justifying the

notation fi, ..., B13.
The root vectors xg, are described as in Remark 2.14. Thus

[ it 10 < m < Ny |

is a PBW-basis of By. If N = 6, then dim By = 24336% = 2193°. If N = 3, then
dim By = 24366 = 273°.
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8.2.5 The Dynkin diagram (8.5 a), N = 6
The Nichols algebra By is generated by (x;);cr; with defining relations

. aefl,2,12,1223%, 12332, 17233%y;

x021=0; xi2=0; x 0
2=0; x)=0, ae(23, 123, 12%3}.

(8.6)
x13=0; x2003=0; x

Here O = (1,2, 12, 12232, 12332, 122332, 23, 123, 12?3} and the degree of the inte-
gral is

= 38a; + 660y + 42a3.
8.2.6 The Dynkin diagram (8.5 a), N =3

The Nichols algebra By is generated by (x;);cr; with defining relations

x13=0;  [[xa3), x2le, x21c = 0; [x223, x23]c = 05
x112=0; x3=0; x8 =0, « € {23,123, 1223} (8.7)
X1 =0; x2=0, ae{l,2,12,12232, 12332, 172332},
Here O = {1,2, 12, 12232, 12332, 122332, 23, 123, 1223} and the degree of the inte-
gral is
a = 26a1 + 48 + 33as3.
8.2.7 The Dynkin diagram (8.5 b), N = 6

The Nichols algebra By is generated by (x;);cr; with defining relations

x13=0; x112=0; x5=0, ae(l,23, 123,122, 1233, 1°233};
x5 =0; [x223.x23]e = 0; x5 =0, o € {2, 12, 1273}; (8.8)
[x2, [x21, x23]c]e + q13G23G21[x223, X211 + g21X21 %223 = 0.
Here O = {1,23, 123, 122, 1233, 12233, 2, 12, 1223} and the degree of the integral
is
= 38a; + 660y + 26a3.
8.2.8 The Dynkin diagram (8.5 b), N =3

The Nichols algebra By is generated by (x;);cr; with defining relations

x1 =0; x2=0; x2=0,«e(l,23,123,122, 1233, 122%3);
x003=0; x;3=0; x3=0; x$=0, ae(2 12, 12%3); (8.9)
[x1, x223]c + g23[x(13), X2]e + (£ = O)qraxax3z) = 0.
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Here O = (1,23, 123, 122, 1233, 12233, 2, 12, 1223} and the degree of the integral
is
a=26a1 +48ar + 17as3.

8.2.9 The associated Lie algebra

This is of type C3.

8.3 Type g(2, 3)
Here 6 =3, ¢ € Gj. Let

010
A=|-12-2]eF¥3, p=(-1,1,-1) €G3.
010

Let g(2,3) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
Then sdim g(2, 3) = 12|14 [29]. There are 4 other pairs of matrices and parity vectors
for which the associated contragredient Lie superalgebra is isomorphic to g(2, 3). We
describe now its root system g(2, 3), see [3].

8.3.1 Basic datum and root system
Below, Aj, A;l), C3 and Cél) are numbered as in (4.2), (3.2), (4.15) and (3.5),

respectively. The basic datum and the bundle of Cartan matrices are described by
the following diagram:

(1)

C3 1 A3 2 Ay
e —— e —— o
aj ap as
3 3

(1)
G 1 7(C3)

e — o

aq as

Using the notation (3.1), the bundle of root sets is the following:

A ={1,12,2,1273,123,12%3% 223, 1223%,23, 3} = 7(AP),

=
AP ={1,12,2,17223,12%3,172°3%, 123, 1223%, 23, 3},
AP =1{1,12,2,1723, 123, 17237, 13, 1232, 23, 3},
AY = {1,12,12%,2, 17233, 12?3, 1223, 123,23, 3}.

8.3.2 Weyl groupoid
The isotropy group at a3 € X is

as

Wi(az) = (657 616362636162. 617, 657) = Z/2 x W(Ay).

@ Springer



460 N. Andruskiewitsch, I. Angiono

8.3.3 Incarnation

To describe it, we need the matrices (q)) iel,» from left to right and from up to down:

o . (8.10)
7 \\z
¢ 3 -1
O——— O
Now, this is the incarnation:

ai > q¥, iely; as — t(q').

8.3.4 PBW-basis and dimension

Notice that the roots in each Afﬁ , 1 € Is, are ordered from left to right, justifying the
notation B, ..., Bio-
The root vectors xg, are described as in Remark 2.14. Thus

{xgl'g .. xgjxgl' |0 <ng < ngk} .
is a PBW-basis of 4. Hence dim B, = 26336 = 273%.

8.3.5 The Dynkin diagram (8.10 a)

The Nichols algebra By is generated by (x;);er; with defining relations

[x223, x23]c = 0; x13=0; x21=0;
[[xa3). X2l x2le =0; x3=0;  x{=0; x5=0; (8.11)
[x(13), X212 = 0; x5 =0; x(313) =0.

Here Oi = {123, 1223, 2, 23} and the degree of the integral is

=81 + 21lay + 15a3.
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8.3.6 The Dynkin diagram (8.10 b)

The Nichols algebra By is generated by (x;);cr; with defining relations

(12, xa3)le. X2le = 0; x13=0;  x55,=0;
[[x32, ¥321]c, X2le = 0;  xf = 0; X3 =0; x3=0; (8.12)

[x(13), x212 = 0; X =0;  x33=0.
Here Oi = {12, 1223, 23, 123} and the degree of the integral is
a=15a1 + 21ay + 15a3.

8.3.7 The Dynkin diagram (8.10 c)

The Nichols algebra By is generated by (x;);cr; with defining relations

xi3=0; x01=0; x03=0; x{=0; x=0;
=0 x, =0 x33=0; [xq3),x]>=0; (8.13)

[x1, x223]c + g23[x(13), X21c — (1 — §)g12x2x(13) = 0.
Here Oi = {12, 1223, 23, 2} and the degree of the integral is
a =8 + 21lar + 8as.

8.3.8 The Dynkin diagram (8.10 d)

The Nichols algebra By is generated by (x;);cr; With defining relations

x112=0; x113=0; x331=0; x332=0;
=00 x3=00 x{3=0 x{3=0; (8.14)

X3 =0;  xa3 — g3, x2le — q1a(l — Oxpxyz = 0.
Here Oi = {1, 13, 3, 123} and the degree of the integral is
a=15a1 + 1lay + 15a3.

8.3.9 The associated Lie algebra

This is of type Ay x Aj.
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8.4 Type g(3, 3)
Here 0 = 4, ¢ € G}. Let

2 -1 0 0
A= B € F¥4, p=(,1,-1,-1) e G3.

Let g(3, 3) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
Then sdim g(1, 6) = 23|16 [29]. There are 6 other pairs of matrices and parity vectors
for which the associated contragredient Lie superalgebra is isomorphic to g(3, 3). We
describe now its root system g(3, 3), see [3].

8.4.1 Basic datum and root system
Below, Fi, A4, 1T, Dy and A are numbered as in (4.35), (4.2), (3.11), (4.23) and

(3.6), respectively. The basic datum and the bundle of Cartan matrices are described
by the following diagram:

A.4 3 1.T 2 114 1 lz4
ar az aq as
4 4 4
2
T(Fy) s13<A§ ) Dy
° ° _— °
aj ae a|7
2
523 (Fa) 1 s14(Aq) 3 514017T)
° _— ° °
aio ay ag

Using the notation (3.1), the bundle of root sets is the following:

A% ={1,12,2,123, 1232, 1237, 23,237, 3, 122334, 127324, 12324, 23%4,
1234, 234,34, 4},

AP ={1,12,2, 123,23, 3, 122324, 123%4, 1234, 1223342, 2324, 1273242, 234, 123742,
23242, 34,4},

AP ={1,12,2,12%3,123,1223%, 23,3, 1727324, 12%3%4,1223%4, 12234, 1234,
124,234, 24,4},

A% ={1,12,2,123,23,3, 122324, 12234, 17233242 1234, 1233247 1223242,
234,12734%, 124,24, 4},

A% ={1,12,122,2,1273,123,23, 3, 172334, 12734, 12734, 1234, 1274, 124, 234, 24, 4},

A% ={1,12,2,123,23,3,1273%4, 12234, 12324, 23%4, 1234, 1223747 124,
234,34, 24, 4},

A =sia(A%), AT =s(AT), A =sa(af), ALY =si(AY).
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8.4.2 Weyl groupoid

The isotropy group atas € X' is

Wias) = (51°, 657, 65°) = W(B3).

8.4.3 Incarnation

To describe it, we need the matrices (q@) iel» from left to right and from up to down:

[ U T S S R Y S SR SR SR QR
(o) [e] [e] o] (] (e} (o] (e}
¢ -1
(o] (o]
_ 7 _
¢ ¢
C -1 1 —1 -1 c
LS L S PSS S (8.15)
1 —1
(] (o]
¢ 3
-1 ¢ ¢ ¢ ¢ -1 ¢ ¢ T ¢
[e] [e] (e} [e] [e] [e]
Now, this is the incarnation:
ai > q9, ielg; ai > s12(qM7), i el 0.

8.4.4 PBW-basis and dimension

Notice that the roots in each Aiﬁ , i € Ijp, are ordered from left to right, justifying the

notation f, ..., B17.
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The root vectors xg, are described as in Remark 2.14. Thus
ngl'; .. xgjxgll |0 <ng < N/gk} .
is a PBW-basis of B4. Hence dim B, = 283°.
8.4.5 The Dynkin diagram (8.15 a)
The Nichols algebra By is generated by (x;);er, with defining relations

x13=0; x14=0; x4=0; [x3321,x32]c =0;
x112=0; x221 =0;  [[xe4).x3]c, x3]c = 0; (8.16)

x223 =0;  x334 = 0; xf =0; xg =0, a e O_C"_.
Here O] = {1, 12,2, 123, 1223, 1232, 23, 23%, 3} and the degree of the integral is
= 1401 + 240 + 30a3 + 8ay.
8.4.6 The Dynkin diagram (8.15 b)

The Nichols algebra By is generated by (x;);er, with defining relations

x223 =0; x4 =0; [[x43,x432]c, x3]c = 0;
x112 =0;  x221 =0; x13=0; x14=0; (8.17)
x32=0; xf:O; xi:O,ani.
Here O = {1, 12,2, 1234, 1223%42,234, 123%42, 23242 34} and the degree of the

integral is
A= 14a; + 240 + 30a3 + 2404.

8.4.7 The Dynkin diagram (8.15 c)
The Nichols algebra By is generated by (x;);cr, with defining relations

x14=0; x112=0; [x@a3),x2]c =0;
X442 = 0;  x443 =0;  [x124,%2]c = 0; 8.18)
x5 =0; x3=0; xi:O,ani; '

x13 = 0; x4y = Cqalxas, x3]e + q23(1 — O)x3x04.
Here O] = {1,4,1234%,23%4, 1234, 1223242, 123, 234, 23} and the degree of the

integral is
A= 14a; + 240y + 20a3 + 2404.
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8.4.8 The Dynkin diagram (8.15 d)

The Nichols algebra By is generated by (x;);c1, with defining relations

x13=0; x14=0; x33=0; [x124,x2]c =0;
32 =0; x3=0; [x34x2] =0; (8.19)

x12=0; xf: ; xi:O,oee(’)i.

Here O = (3,123, 12223, 12, 1223324, 122334, 12234, 234, 24} and the degree of

the integral is g =24a1 + 360 + 2003 + 14ay.

8.4.9 The Dynkin diagram (8.15 e)

The Nichols algebra By is generated by (x;);er, with defining relations

x01=0; x13=0; x33=0;
x003=0; x14=0; x12 =0; xf =0; (8.20)

x224=0; X34=0; x; =0, o 603_.

Here O = {3, 23,2, 12234, 122332421234, 1223342 1222342, 124} and the degree

of the integral is 5= 24ay + 363 + 2003 + 24as.

8.4.10 The Dynkin diagram (8.15 f)

The Nichols algebra By is generated by (x;);er, with defining relations

x13=0; x1a=0; x34=0; [[xu3),x2lc, x2lc =0;
x223 =05 x204 =0;  [[x324,%2]c, x2]c = 0; (8.21)

x332 =0 x%:O; xf:O; xé:O,ani.

Here O = {1,12,122,2,1%22334, 12334, 12234, 1234, 234} and the degree of the
integral is
a = 14ay + 360 + 20a3 + 140y4.

8.4.11 The associated Lie algebra

This is of type Bs3.
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8.5 Type g(4, 3)

Here 0 =4, ¢ € G}. Let

2 -1 0 0

_|-1 0 1 4x4 PP 4

A=l 5 5, L|eF™ p=0-1L-1L-DeG.
0 0 1 0

Let g(4,3) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
Then sdim g(2, 3) = 24|26 [29]. There are 9 other pairs of matrices and parity vectors
for which the associated contragredient Lie superalgebra is isomorphic to g(4, 3). We
describe now its root system g(4, 3), see [3].

8.5.1 Basic datum and root system
Below, C\P", Cy, Fy, Ag, 1T, Dy and A are numbered as in (3.15), (4.15), (4.35),

(4.2), (3.11), (4.23) and (3.6), respectively. The basic datum and the bundle of Cartan
matrices are described by the following diagram, called g(4, 3):

HA
G 4 Cy

° °

aj a

2| 2|

. (A(Z))

T(Fy) 4 Ag 3 1 T $13(45

° ° ° °

az ay az aio

1 | 1 | 1 4
T(Fy) 4 Ay 3 1 T 2 Dy

° ° ° °

as ag ag ay

Using the notation (3.1), the bundle of root sets is the following:

A9 =1(1,12,2,123,1223%,123%,23,23% 3, 1223%4, 122324, 123%4, 2334,
122324, 12324, 1223%47 1234, 23%4, 234, 3%4, 34, 4},

AP =(1,12,2,123,23, 3, 122324, 12324, 1234, 127342 1223342 2374,
1223247 234, 1223443 123742123242 23347 23747 374,34, 4),

A =1{1,12,2,123,1223%,123%, 23,232, 3, 12233%4, 1223334, 1222334, 127324,
1222324, 122324, 12233442 123%4, 1234, 234, 234, 34, 4},

A =1{1,12,2,123,23,3, 1722324, 122374, 12233%42 12233342 12374,
12223342 1234, 12233%43, 1223342 1223247 12347, 23%4, 234, 23%4% 34, 4},

AD =1{1,12,2,123,1223%,123%,23,23%, 3, 12334, 123334, 1223%4, 22334,
122324, 22324, 1233%4% 12324, 1234, 2324, 234, 34, 4},

A% =(1,12,2,123,23, 3, 12%3%4, 12324, 1234, 1233%42, 1233342 22324,
1223342 2324, 1233%43, 1223242 123242, 223342 234, 23%42 34, 4},
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AY =1{1,12,2,123,23,3,122%34, 12734, 12233242 1223342 1234, 122734,
124, 12233243 1223242 12234212342, 234, 34, 2342, 24, 4},

A% =1{1,12,2,123,23,3,1233%4, 12%3%4, 12234, 22324, 2234, 1233342, 123%4,
2324, 1233242 1234, 1223242124, 234, 24, 34, 4},

A =1{1,12,2,123,23,3,1723324, 1222324, 122234, 123324, 122374, 17243742
22324, 12734, 234, 12233247 112332471234, 124,234, 24, 4},

A0 ={1,12,2,123,23,3, 172334, 122734, 17224, 12334, 12234, 1724347 2734,
1234, 1223342, 234, 123342, 1224, 124, 224, 24, 4}.

8.5.2 Weyl groupoid
The isotropy group at ag € X is

Wias) = (51°, 65°. 63°. 64°26364516263626164536264) = W(C3) x Z/2.

8.5.3 Incarnation

To describe it, we need the matrices (q(i)) ilo» from left to right and from up to down:

¢ ¢ -1 ¢ - ¢ -1 ¢ ¢ -1 ¢ ¢ ¢ -1
o] 0] (] [e] [e] [e] o] 0]
-1 ¢ -1 ¢ ¢ ¢ -1 -1 ¢ -1 ¢ -1 ¢ -l
[e] [e] [e] (] [e] [e] (o] (o)
-1 ¢ ¢ ¢ ¢ ¢ -l -1 ¢ ¢ ¢ -1 ¢ -l
[e] [e] (e} (o) [e] [e] [e] [e]
_1 ;
] (o)
: (8.22)
¢ B
¢ ¢ -1 ¢ ¢ -1 ¢ ¢ T -1
o] 0] (e} o (o) o)
_1 é'
0] (o]
_ _ 3
¢ ¢
¢ ¢ otz -1 ¢ -1 T >-1
o] 0] (e} [0 [e] [e]

Now, this is the incarnation: a; +—> q(i), i €lp.
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8.5.4 PBW-basis and dimension

Notice that the roots in each A:’f ,i € 1o, are ordered from left to right, justifying the
notation f, ..., Bn.
The root vectors xg, are described as in Remark 2.14. Thus

{xgg .. xgjxgll |0 <ng < N,gk} .
is a PBW-basis of B4. Hence dim B, = 21236 = 213310,

8.5.5 The Dynkin diagram (8.22 a)

The Nichols algebra By is generated by (x;);ey, with defining relations

x14=0; x4 =0; [xa3),x2]c=0; x13=0;

x112 =0;  x3332 =0; x3334 = 05 323
x5 =0; x;=0; xe =0, aec0f; ’

[x2, x334]c — q3a[x(24), X3]c + (— £)q23x3x24) = 0.

Here O = {1,123, 12%3%,23, 3, 122334, 123%4, 12234422324, 34} and the degree
of the integral is
a=18a; + 32 + 57a3 + 2004.

8.5.6 The Dynkin diagram (8.22 b)

The Nichols algebra By is generated by (x;);cr, with defining relations

x13=0; x14=0; x4=0; [[x24),x3]c,x3]c =0;
x112=0; x332=0;  [x334,x34]c = 0; (8.24)

[x13), x2]c = 0; x% =0; xZ =0; xév"‘ =0, e (’)j_.

Here O = {1,3,123%4, 1234, 1223442 12233422324, 1223242, 234, 34} and the
degree of the integral is

= 18a; + 32 + 57a3 + 39a4.
8.5.7 The Dynkin diagram (8.22 c)

The Nichols algebra By is generated by (x;);er, with defining relations

x3=0; x14=0; x4 =0; [[xe4,x3]c,x3]c =0;
(332, x32]c = 0; x334=0; x7=0; [x3321,X32] = 0; (8.25)

[X(13),xz]c =0; x% =0; x‘% =0; xollv"‘ =0, x e Oj_
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Here O = ({12,123,123% 23,3, 12%3%4, 12%3%4, 1233%42,2324,234} and the
degree of the integral is

= 18a; + 4507 + 57a3 + 2004.
8.5.8 The Dynkin diagram (8.22 d)

The Nichols algebra By is generated by (x;);cr, with defining relations

x13=0; x14=0; x24=0; [[x23,x04])c,x3]c =0;
=0 x3=0: [[xa3.x43]c x3le = 0; (8.26)

[x(13), x2]c = 0; x% =0; xf =0; xév" =0, xe Oi.

Here O = {12, 23, 122324, 1234, 1233442, 12233422324, 123242, 234, 34} and the
degree of the integral is

a=18ay +45a + 57a3 + 39a4.
8.5.9 The Dynkin diagram (8.22 e)
The Nichols algebra By is generated by (x;);er, with defining relations

x13=0; x14=0; x4=0; [[x@24),x3]c,x3]c =0;
x01=0; x23=0; [x3321,x32]c =0; (8.27)

x334 = 0; x12 =0; xf =0; x,iv‘” =0, ae Oj_.

Here O] = {2,123,23,232,3,1223%4, 122324, 12233%42,123%4, 1234} and the
degree of the integral is

a =291 + 450 + 57a3 + 2004.
8.5.10 The Dynkin diagram (8.22 f)

The Nichols algebra By is generated by (x;);er, with defining relations

x14=0; x24=0; [[x43, x432]c, x3]c = 0;
X1 =0; x3=0; x7=0; x;3=0; (8.28)

x%:O; xf:O; x(iV“:O,oani.

Here O] = {2,123, 122324, 12233%42 12324, 1234, 1223342, 234, 23%42 34} and
the degree of the integral is

=291 + 450 + 57a3 + 3904.
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8.5.11 The Dynkin diagram (8.22 g)
The Nichols algebra By is generated by (x;);cr, with defining relations

x3=0; x14=0; x21 =0; x203=0; x204=0;

x32=0; x=0 x=0;, xI=0; xNe =0, a e ol; (8.29)

x4y — Cqaalxaa, x3]c — (1 — $)ga3xzxas = 0.

Here OF = {2, 123, 12234, 1234, 123342, 122342, 12342, 234, 24, 4} and the degree
of the integral is
= 18a; + 450 + 393 + 41ay.
8.5.12 The Dynkin diagram (8.22 h)
The Nichols algebra B, is generated by (x;);ey, with defining relations

[xa3y, %20 =0; x3=0; x32=0; x3=0; xi=0;

X124, X20e = 0; x1a=0; x334=0; xVr=0, oe0Ol; (8.30)

X7 =0; x4y — Cqaalxas, x31c — (1 — $)gasxzxos = 0.

Here O = {12,123,3,1%233%4, 122324, 12234,23%4, 1234, 234,24} and the
degree of the integral is

=291 + 45a> + 393 + 29ay4.

8.5.13 The Dynkin diagram (8.22 i)
The Nichols algebra By is generated by (x;);er, with defining relations
x13=0; xa=0; x32=0; [x104,x2]c =0;

x112 =05 x442 = 0;  [[x32,x324]c, X2]c = O; (8.31)

[x(13), x2]c = 0; x% =0; x% =0; xé\’“ =0, ae Oi.

Here 01 = {1, 123, 23, 1222324, 122324, 22324, 12234, 1234, 234, 4} and the degree
of the integral is
=291 + 540 + 39a3 + 2904.
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8.5.14 The Dynkin diagram (8.22 j)

The Nichols algebra By is generated by (x;);cr, with defining relations

x13 =0;

x14=0;  x33 =0;

x112 =0;  x221 =0;

2§ ) .
x;=0; x23=0; x40 =0;

[[x124,%2]¢, x2]c = 05
[[x324,%2]c, x2]c = 05
xév"‘ =0, a € Oi.

(8.32)

Here OF = {1, 12,2, 12224, 12234, 1224, 124, 24, 24, 4}and the degree of the inte-

gral is

8.5.15 The associated Lie algebra

This is of type C3 x Aj.

8.6 Type g(3, 6)

Here 6 =4, ¢ € Gj. Let

=291 + 54y + 17a3 + 29a4.

p=(-1,1,—-1,-1) € G5.

Let g(3,6) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
Then sdim g(3, 6) = 36|40 [29]. There are 6 other pairs of matrices and parity vectors
for which the associated contragredient Lie superalgebra is isomorphic to g(3, 6). We
describe now its root system g(3, 6), see [3].

8.6.1 Basic datum and root system

Below, C,(,I)A, Cy, Fy4, Aq and | T are numbered as in (3.15), (4.15), (4.35), (4.2) and
(3.11), respectively. The basic datum and the bundle of Cartan matrices are described

by the following diagram:

az

4

Cy
[ ]

ap

(A
C2
L]

(HA

&) 2 T(Fy)
e —— o
as as
4 4
Cy 2 Ay
° °
as ag

3

v

ar
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Using the notation (3.1), the bundle of root sets is the following:

A% =(1,12,2,123,23, 3, 1727324, 122324, 17233442 12233342 112374, 12223347 1234, 13243044
12233543 12233443 12223443 11223442 1223342 122330442324, 123%4% 374, 12233%4%,
1223%43 1223242 123242 23342 234, 23242 34, 4},

A ={1,12,2,123, 12732, 1232, 23,232, 3, 1223354, 12233%4, 12223%4, 1223%4, 1223334, 1222334,
13243042 1222324, 122324, 1223%4, 12233042 1223354212334, 2334, 12233442 12324,
1223%42 1234, 2324, 234, 324, 34, 4},

AP =1{1,12,2,123,23,3,1223%4, 123%4, 1234, 1233%4%, 1233342 22374, 1223442, 1223342,
1233343123347, 23%4, 374, 12%304% 1233644 1233443 223342 1223943 23342 1233944,
1223242123242, 223443, 234,23%4% 34, 4),

A% ={1,12,2,123, 122321232, 23,232, 3, 123394, 1233%4,1223%4, 22344, 123334, 122324,
1243042122324, 22334, 22324, 1233042 1233542 12334, 23%4,1233%42 12324, 1273442,

1234, 2324, 234, 324, 34, 4},

A ={1,12,2,123,12%3%,1232,23,23%, 3,122%3%4, 17224344, 12233%4, 127344, 1223374, 127334,
13253042 1222334, 1227324, 12253042 122324, 12243%42 22334, 127324, 22324, 17233442,
123344212374, 1234,23%4,234, 34, 4),

A% = (1,12,2,123,23,3, 172324, 122324, 12233442 12233342 112374, 122233421234, 13273044,
12243943 112243447 12233943 1233942 1233742 12293044 22324, 1273342 2324,

1224394% 1233443 1223242123242 223%4% 234, 2347 34, 4),

AT ={1,12,2,123,23,3,122%3%4, 1222324, 172234, 12%3%4, 1223%4, 12243342 22374, 123%4,

12233342 2324, 13253443 1233342 12253443 122%3%43 12234, 12233742 2734, 1233747

12243343 1234, 1223242 124,234, 24, 34, 4).

8.6.2 Weyl groupoid

The isotropy group at a7 € X' is

Wiar) = (17, 637, 647, 63" 646263626463) = W (Cy).

8.6.3 Incarnation

To describe it, we need the matrices (q)) il from left to right and from up to down:
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o
o
o
o
ol

¢ ¢ -1 ¢ ¢ ¢ -1 ¢ ¢ -1 ¢ -1 ¢ -l
] o] o o o] o] o] o) (833)
-1
o
_ 3
z
¢t ot N¢
0] (e} (o)

Now, this is the incarnation: ¢; — q®, i € I;o.

8.6.4 PBW-basis and dimension

Notice that the roots in each Af, i € I, are ordered from left to right, justifying the
notation fi, ..., B32.
The root vectors xg, are described as in Remark 2.14. Thus

{xgzj xgjxgll |0 < ng < Nﬁk} .

is a PBW-basis of By. Hence dim B, = 21631264 — 20316

8.6.5 The Dynkin diagram (8.33 a)

The Nichols algebra By is generated by (x;);cr, with defining relations

x13=0; x4=0; x24=0; [[x4),x3]c,x3]c =0;
x21 =0; x223=0; [x334,x34]c = 0; (8.34)
=0 xf=0 x=0; xhe =0, a e 0F.

Here 01 = {2,23.3,1223%4, 1234, 1234, 1223342, 1233%43 2324, 1233443 223342 1223443 23342 234,23242,
34) and the degree of the integral is

a =291 + 84ay + 135a3 + 9lay.
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8.6.6 The Dynkin diagram (8.33 b)

The Nichols algebra By is generated by (x;);c1, with defining relations

xiu=0; xm =0; xu=0 x=0 x;=0;
x4 =0; x03=0; x333a=0; xM=0, aec o, (8.35)
x13 =05 [x2, x334]c + g34[x24), X3]c + (o $)qa3x3x24) =0

q
Here 0]

(2,123,23,232, 3, 123344, 122344, 122334, 122324, 22334, 1233542, 2334, 12324, 2324, 234, 34) and
the degree of the integral is

=291 + 84wy + 1353 + 4604.

8.6.7 The Dynkin diagram (8.33 c)

The Nichols algebra By is generated by (x;);er, with defining relations

x13=0;

x14 =0; x4 =0;  [[xe4),x3le, x3]c = 05
x332 =0;  [xq3), x2]le =0;  [x334,Xx33]c = O; (8.36)
x%:O; x%:O; x‘%:O; xﬁ”:O,ani.
Here of

(12,123, 3, 122324, 12324, 12223342 1234, 12233543 12233443 1223342 2324, 123342 1223443,
123242, 234, 34} and the degree of the integral is

a=15Ta; + 84wy + 135a3 + 91ay.
8.6.8 The Dynkin diagram (8.33 d)

The Nichols algebra By is generated by (x;);er, with defining relations

x3=0; xpn=0; x7=0; [xa3,xl=0 x

x; =0;
—0 0 220 Ne _ q.
x14=0; x3334=0; x3=0; x,°=0, xe O+, (8.37)
x24 =05 [x2, x334]c + g34[x24), X3]c + (o £)q23x3x24) = 0.

Here 0 = (12,123, 1232,23,3, 1223344, 1223%4, 1222334, 122334, 122324, 12233%42 12334, 123%4, 1234, 23%4,
34) and the degree of the integral is

a=15Ta; + 84wy + 135a3 + 4604.
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8.6.9 The Dynkin diagram (8.33 e)

The Nichols algebra By is generated by (x;);c1, with defining relations

x13 =05 x14=0; x24=0; [[x@4,x3]c,x3]c =0;
[xa3)y,x2le =0;  x112=0; x333¢ =0; [x3321,x32]c =0; (8.38)
[x332,x32] = O; x% =0 xf =0; xév" =0, e Oi.

Here 0 = (1,123,12232, 23,3, 1223344, 1233%4, 1223334, 123334, 1223%4, 12243542, 122324, 123%4, 1234, 23%4,
234) and the degree of the integral is

a=5Ta; + 1100y + 13503 + 4604.

8.6.10 The Dynkin diagram (8.33 f)

The Nichols algebra By is generated by (x;);er, with defining relations

x13 =05 x14=0; x4 =0; [[x23,x04)]c, x3]c = 0;
xi =0 x3=0; [[x43.0432]c, ¥3]c = 0; (3.39)
xazxle=0; x3=0; xf=0 x*=0, aec0].

Here 07 = {1,123,23,122324, 12233342 12324, 1234, 12243543, 12233443 1233342 1223342, 2324,1233443,
1223242, 234, 34) and the degree of the integral is

g =15Ta; + 1100 + 1353 + 91ay.
8.6.11 The Dynkin diagram (8.33 g)
The Nichols algebra By is generated by (x;);cr, with defining relations

x01=0; x204=0; x332=0; x13=0; x14=0;

x3=0; x2=0; x334=0; xN=0 aec0Ol; (8.40)

x3=0; x@1) = Cqaalxaa, x3]e + (1 — D)ga3x3xoq.

Here o0f = {1,12,2,123,23,3,1223%4,122%3342 12233342 1233342 12234, 12233242 1233242, 1234,
1223242 234) and the degree of the integral is

a=5Ta; + 110as + 68z + 9lay.
8.6.12 The associated Lie algebra

This is of type Cy.

@ Springer



476 N. Andruskiewitsch, I. Angiono

8.7 Type g(2, 6)

Here 0 =5, ¢ € G}. Let

2 -100 0
-1 20-10

A=]0 02-10 | e, p=(,1,1,-1,-1) € G3.
0 110 —1
0001 0

Let g(2,6) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
We know [29] that sdim g(2, 6) = 36|20. There are 5 other pairs of matrices and
parity vectors for which the associated contragredient Lie superalgebra is isomorphic
to g(2, 6). We describe now the root system g(2, 6) of g(2, 6), see [3] for details.

8.7.1 Basic datum and root system

Below, As, 177 and Ds are numbered as in (4.2), (3.11) and (4.23), respectively. The
basic datum and the bundle of Cartan matrices are described by the following diagram:

7(Ds) 1 7(Ds)
e — o

ap an
2|

535(As) 5 171 3 Ds 4 Ds

e —— o ° °

a3 as as ae

Using the notation (3.1), the bundle of root sets is the following:

A =e(a6), A2 = o(a),

A9 ={1,12,2,123,23,3, 122324, 12324, 1234, 23%4, 234, 34, 4, 12233475,
12232425, 1232425, 232425, 1223245, 123245, 23245, 12345, 2345, 345, 45, 5,

A% = {1,12,2,123, 23,3, 12734, 1234, 124, 234, 24, 34, 4, 12232425, 1223475,
123425, 23475, 122345, 12345, 2345, 345, 1245, 245, 45, 5,

A9 ={1,12,2,123,23, 3, 12324, 12324, 1234, 23%4, 234, 34, 4, 12233475,
1223345, 1223245, 123245, 23245, 12345, 2345, 345, 1235, 235, 35, 5,

A% = {1,12,2,123,23, 3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235,
122334252, 12233452, 23245, 12232452, 2345, 235, 1232452, 232452, 345, 35, 5.

8.7.2 Weyl groupoid

The isotropy group at az € X is

Wiaz) = (s1%, 657, 657 62636265, 657, 64°) = W(As).
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8.7.3 Incarnation

To describe it, we need the matrices (q)) iel,» from left to right and from up to down:

o (o) o o o
(8.41)

¢ ¢
o) o)

¢ ¢ ¢ ¢ =1 ¢ -1 ¢ ¢ ¢ ¢ ¢ [

o) o o] o o) o (0] o

Now, this is the incarnation:
ai > 7(q°7), i e Iy; az > s35(q); ai > q7?, i elye.

8.7.4 PBW-basis and dimension
Notice that the roots in each Afﬁ , i € I, are ordered from left to right, justifying the

notation f, ..., Bos.
The root vectors xg, are described as in Remark 2.14. Thus

{xgjg xgjxgll |0 <ng < N/gk}.

is a PBW-basis of By. Hence dim By = 2!0315.
8.7.5 The Dynkin diagram (8.41 a)
The Nichols algebra By is generated by (x;);er; with defining relations

x3=0; xiu=0; x15=0; [[[xa4.x3]lec, x2]c, x3]c =0;
x4 =0; x221=0; x112=0; [[[x5432,%3]¢, X4]c, x3]c = O;

(8.42)
x5 =05 x223=0; x443 =0; X445 = 0;

x35 =0; x554 = 0; x32 =0; x2 =0, x e Oi.

Here 0 = (1. 12, 2,122324,123%4,23%4, 4, 12232425, 1232425, 232475, 1223245, 123245, 23245, 45, 5} and the
degree of the integral is

=200 + 360 + 48a3 + 3604 + 20a5.
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8.7.6 The Dynkin diagram (8.41 b)

The Nichols algebra By is generated by (x;);c1; with defining relations

[x125, x2]c =0;  x13=0; X112 =0; x24 =05 x45 =0;
} ) . 2 } 2 )
[x@24), x31c =0; x14=0;  x443 = O; x;=0; x3=0;
) . .3 .
[xaz), x2le =0; x15=0; [x435,.x31c =0; x5 =0, «eOl;

x52 =0; x235 = g35¢[x25, X3]c + @23 (1 — {)x3x25.

(8.43)

Here 0f = (1.123,23,12234, 124,24, 34, 12232425, 123425, 23425, 122345, 345, 1245, 245, 5} and the degree

of the integral is
a = 20a1 + 36a + 36a3 + 2004 + 2605.

8.7.7 The Dynkin diagram (8.41 c)
The Nichols algebra By is generated by (x;);ey; with defining relations

x13=0; x23=0; 2xp4=0; x25=0; [x435, x3]c =0;
x14=0; x112=0; x21=0; x45=0; [x04),x3]c =0;

x15=0; x553 =0; x32:0; xf:O; xi:O,ani.

(8.44)

Here 09 = {1.12,2,1223%4,12324,23%4, 4, 12233425, 1223345, 12345, 2345, 345, 1235,235,35) and the

degree of the integral is
a=20a1 + 36a) + 48a3 + 2004 + 2605.
8.7.8 The Dynkin diagram (8.41 d)

The Nichols algebra By is generated by (x;);er; with defining relations

x3=0; x12=0; x4=0; x5=0; x45=0;

x14=0; x330=0; x21=0; x23=0; x333=0; (8.45)
. . . 2 . 3
x15 =0; x335 =0; x553 =0; x; =0; x, =0, ae Oi.
Here 0f = (1.12.2,123,23,3,1234, 234,34, 4, 122334252 12233457, 12232452, 1232457,23245%} and the

degree of the integral is
=200 + 360 + 48a3 + 3004 + 2605.
8.7.9 The associated Lie algebra

This is of type As.
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8.8 Type el(5; 3)

Here 0 =5, ¢ € G}. Let

01 0 0 0
-12-10 0

A=]0 -1 2 —1—-1|eF>3 p=(1,1,1,1,-1) € G3.
0 0-12 0
0 01 0 0

Let el(5; 3) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
We know [29] that sdim el(5; 3) = 39|32. There are 14 other pairs of matrices and
parity vectors for which the associated contragredient Lie superalgebra is isomorphic
to el(5; 3). We describe now the root system e1(5; 3) of el(5; 3), see [3] for details.

8.8.1 Basic datum and root system
Below, Ds, CEs, As, F\", E?, | Ti and 2T are numbered as in (4.23), (3.16), (4.2),

(3.10), (3.9) and (3.11), respectively. The basic datum and the bundle of Cartan matri-
ces are described by the following diagram:

Ds 1 Ds 2 Ds 3 2T

° _— . E— ° — o

a ap a3 az

5| 5| 5 4

125 1 D.S 2 C.E5 A.;

aji aio ag ay
o |

W3(.Ds) 2 345(.17'1) 1 S45(.1T1) F4.
ais ag ag aj
4| 4|
2)
S34(.A5) 1 834(.A5) 2 S34(fe )
as az aq

Using the notation (3.1), the bundle of root sets is the following:

A% = {1,12,2,123, 23,3, 1234, 1223242, 12324212342, 234, 232472342 34,342 4, 1223%4%5,
12233435, 12232435, 1232435, 232435, 12232475, 1232425, 23%4%5, 122334452, 123475,

12345, 23475, 2345, 3475, 345, 45, 5},

A = {1,12,2,123,23,3, 1234, 234, 34, 4, 12232475, 1232425, 123475, 12345, 122334452
122334352,232475, 122324352 23425, 1223242522345, 122334453 12324352 12324752,
1234252, 2324352 2324252 2342573425, 345, 34752, 45, 5),

A9 = s34({1,12,2,123, 23,3, 1222374, 122374, 12324, 1234, 2324, 234, 34, 4,12233%4%5 122334425,
122333425, 122233425, 12233425, 122232425, 12232425, 1232475, 23245, 1223344352,
12223245, 1223245, 123245, 12345, 23%45, 2345, 345,45, 5)),

A% = s34({1.12,2, 123,23, 3, 122324, 12324, 1234, 23%4, 234, 324, 34, 4, 12734435, 12234475,
12233425, 1233425,233475, 12232425, 1232425, 232425, 37425, 122344352 1223245, 123245,
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12345, 23245, 2345, 3245, 345, 45, 5)),

AP = 534({1,12,2, 123,23, 3, 122324, 12324, 1234, 22324, 2324, 234, 34, 4, 1233%435, 12334425,
12333425, 12233425, 2233475, 12232425, 2232425, 123425, 237475, 123344352 1223245,
123245, 12345, 273745, 23745, 2345, 345, 45, 5}),

A% = 545({1.12,2, 123,23, 3, 12734, 1234, 124,2234, 234, 24, 34, 4, 12332435, 12332425, 12232425,
2232425 1233425, 1223425, 223425, 123425, 23425, 123324352 122345, 12345, 1245, 22345,
2345,245, 345,45, 5)),

AT = s545({1,12,2, 123,23, 3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 122334252, 12233452,
23245, 122324252 12232452 2345, 235, 122334253 12324252 1232452, 123452, 2324252,
23245223452 345,45, 3452, 35, 5)),

A% = {1,12,2,123,23,3, 122234, 12734, 1234, 124,234, 24, 34, 4, 122332435, 122332425,
122232425 12232425, 12233425, 12223425, 1223425, 123425, 23425, 1223324352,

1222345, 122345, 12345, 1245, 2345, 245, 345, 45, 5},

A9 = {1,12,2,123,23,3, 122324, 12324, 1234, 23%4, 234, 324, 34, 4, 1223%4%5, 12233425,
1233425, 233425, 1223345, 123345, 23345, 1223245, 123245, 122344252 12345, 1235,
23245, 2345, 235, 3245, 345, 35, 5,

2910 = 11,12,2, 123,23, 3, 1222324, 122324, 12324, 1234, 2324, 234, 34, 4, 122334425, 122333425,
120233425 12233425, 12233345, 12223345, 1223345, 12023245, 1223245, 1223344252
123245, 12345, 1235, 23245, 2345, 235, 345, 35, 5},

A% = {1,12,2,123, 23,3, 127324, 12324, 1234, 22324, 2324, 234, 34, 4, 1233%425, 12333475,

12233425, 2233425 1233345, 1223345, 223345, 1223245, 223245, 123344252 123245,
12345, 1235, 23245, 2345, 235, 345, 35, 5},

A2 = {1,12,2, 123,23, 3, 1234, 234, 34, 4, 12223245, 1223245, 1223344252 1223334252,
122333452 123245, 1222334252 120233452 12345, 122232452 1235, 1223344253,
122334252 12233452 12732452, 1237452, 23245, 2345, 345, 232457, 235, 35, 5,

A3 = [1,12,2,123,23, 3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 122344252, 122334252,
12233452, 23245, 12232457, 2345, 235, 1273%4253, 12334252 1233452, 1232452, 2334252,
233452, 232452, 3245, 345, 32452, 35, 5,

A% = 1,12,2,123,23,3, 1234, 234, 34,4, 1223245, 123745, 12345, 1235, 123344252 123334252,
12333452 223245, 122334252 1223345223245, 123344253 12232452 1232452 22334252,
2345, 345,223345%, 2232457 237452, 235,35, 5},

A5 = w3((1.12,2,123, 23,3, 122234, 12734, 1234, 124,2234, 234,24, 4, 122432435, 122432475,
122332425, 12332425, 12233425, 1233425, 12223425, 1223425, 223425, 1224324352,
1222345, 122345, 12345, 1245, 22345, 2345, 245, 45, 5).

8.8.2 Weyl groupoid

The isotropy group at ajp € X is

Wian) = (51", 65", 65, 64", 652 6463626563645261 626463656263 64G5)
W(Bs) x 7.)2.

12
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8.8.3 Incarnation

We set the matrices (q("))ieﬂ15 , from left to right and from up to down:

¢ ¢ ¢ ¢ ¢ ¢t ¢ ¢ -1 ¢t ¢ ¢ ¢ ¢ ¢ -1 ¢ -1
[e] [e] [e] [e] [e] (e} [e] [e] (] [e]
(8.46)
-1 ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢ -1 ¢ ¢ r ¢ r ¢
(o] (o] (o] [e] o O (o) (o] (o] 0]
-1
[e]
¢
/;
1 7 T 1 T 7 -1 ¢ -17¢ -1 ¢ ¢
SIS SR A o ot EE
c -1
(o] (o)
¢ ¢
/c /;
¢ ¢t ¢ ¢ =17 ¢ -l -1 ¢ ¢/ ¢ -1 ¢ ¢
0] (o] 0] (e} (o) (o]
—1 —1
0] (]
¢ ¢
P T L S S S ¢ -1 ¢ -1 ¢ -1 ¢ ¢
0] o 0] (o] o o (] o]
-1 -1
] o)
¢ 3
-1 ¢ ¢ ¢ -1 ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢
[e] 0] 0] o 0] 0] [e] o]
—1 —1
0] (o)
B 13
¢ ¢ =1 ¢ -1 ¢ ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
[e] (e} [e] (e} [e] (e} (o) (o]
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Now, this is the incarnation: a5 — w3 (q(ls)),

a; — S34(q(5_i)), ielzs; a— S45(C|(i)), i=6,8 a +— q(i), otherwise.
8.8.4 PBW-basis and dimension
Notice that the roots in each Ai", i €15, are ordered from left to right, justifying the

notation S, ..., B33.
The root vectors xg, are described as in Remark 2.14. Thus

{xg: Xt |0 < g < N,gk} .
is a PBW-basis of B4. Hence dim B4 = 216317,

8.8.5 The Dynkin diagram (8.46 a)

The Nichols algebra By is generated by (x;);ey; with defining relations

x13=0; x14=0; x15=0; [[x@35),x4]c, x4]c =0;

x4 =0; x5=0; x35=0; x112 = 0;
(8.47)

x01=0; x223=0; x332=0; [x4432,%43]c =0;

x334 = 0;  x445 = 0; x52 =0 xé =0, e Oj_.

Here 0f = (1,12,2,123,23,3, 1234, 1223242, 123242, 12342, 234, 23242, 2342, 34,342 4, 122334452} and the
degree of the integral is

A =24a; + 44y + 60asz + 7204 + 20as.

8.8.6 The Dynkin diagram (8.46 b)

The Nichols algebra By is generated by (x;);e1; with defining relations

x4 =0; x13=0; x14=0; x15=0; [[x54,x543]c, x4]c =O;
x5 =0; x112=0; x221=0; x223=0; x330=0; (8.48)

x35 =0; x334 =0; xi:O; x52=0; xi:O,ani.
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Here 0f = (1.12,2,123,23,3,12345, 122334452 122324252, 2345, 12324252, 1234252 2324252, 234252, 345,
34252 45) and the degree of the integral is

A =24a; + 44y + 60asz + 7204 + 58as.
8.8.7 The Dynkin diagram (8.46 c)

The Nichols algebra By is generated by (x;);c1; with defining relations

x4 =0; x3=0; x14=0; x15=0; [[x23, x4l x3]c =0;
x5 =0; x443 =0; x445 =0; x550 =0; [x3),x2]c =0; (8.49)
x35 = 0; x12:O; x%:O; x32:O; xS:O,ani.

Here 0f = {12,23,12324,22324,234, 4, 12334435, 12334425, 12233425 2232425 1232425, 123344352, 123245,
223245,2345,45,5) and the degree of the integral is

A = 24a; + 660 + 84a3 + 600y + 32a5.

8.8.8 The Dynkin diagram (8.46 d)

The Nichols algebra By is generated by (x;);ey; with defining relations

x13=0; x14=0; x15=0; [[x@4,x3]c, x3]c =0;
x4 =0; x25=0; x35=0; [x3345,x34]c =O0;

(8.50)
xi2 =05 x332=0; xa3 =0;  [x3),x2]c = 0;
X445 = 0;  x554 = 0; x% =0; xé =0, axe Oi.
Here 0] = (1.3,122324,324, 34,4, 12234435, 12234425, 12233425, 12232425, 32425, 122344352, 1223245, 3245,
345,45, 5) and the degree of the integral is
A =24a; + 44y + 84a3 + 600y + 32a5.
8.8.9 The Dynkin diagram (8.46 e)
The Nichols algebra By is generated by (x;);ey; with defining relations
x3=0; x14=0; x15=0; [[[xs5432,x3]c, X4]c, x3]c = O;
x4 =0; x25=0; x35=0; x221 = 05 851)
x203 = 0;  x443 = 0;  xa45 =0;  [[[x14),x3]c, x2]c, x3]c = 05 '
x554 = 0; x12=0; x%:O; x;=0, ani.
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Here 0] = (2.123,12223%4,1234,23%4,4,12233%435, 122334425, 12233425, 122232425, 232425, 1223344352,
12223245, 12345, 23245, 45, 5) and the degree of the integral is

A = 44a; + 660y + 84a3 + 600y + 32a5.

8.8.10 The Dynkin diagram (8.46 f)

The Nichols algebra B, is generated by (x;);ey; with defining relations

x13=0; x4 =0: [x25.x2]c =0; [x435, x3]c = 0;
x14=0; x45 =0; [x@24),x3]c =0; x443 =0; x% —0:

xs=0; 2 =0; [xaz.xle=0; x3=0 a0} (8.52)
x2=0; x2=0; x5 = 3sC[x25. x3]e + q23(1 — )x3x25 = 0.

Here 01 = (12,23,122234,1234,24,34,122332435, 122232425, 12233425,12234%5, 23425,1223324352,
1222345, 12345, 245, 345, 5} and the degree of the integral is

A= 44a; + 660y + 60asz + 3204 + 44as.

8.8.11 The Dynkin diagram (8.46 g)

The Nichols algebra By is generated by (x;);e1; with defining relations

x3=0; x14=0; x15=0; [xp4,x3]lc=0; x4 =0;

x21=0; x203=0; x443=0; [x235,x3]c =0; x5 =0; 3.5%)
X445 = 0; x%:O; x52=0; xS:O, ae 0l '
x112 = 0;  x35) = q45¢[x35, X4lc + q34(1 — §)x4x35.

Here 0f = {1,12,2,1234,234,34, 12345, 12233452, 122324252 2345, 12324252, 123452, 2324257, 23452, 345,

3452, 51 and the degree of the integral is

A = 2401 + 44ar + 603 + 58ay + 44as.
8.8.12 The Dynkin diagram (8.46 h)
The Nichols algebra By is generated by (x;);ey; with defining relations
x3=0; xua=0; x5=0; [x4,x3]c=0; x4=0;
x23 =0; x5 =0; x4a3=0; [xa35,03]c =0; x45 =0;

8.54
xP=0; x3=0; xI=0; X2 =0, ae0l; (839

x201 = 0; X235 = g35¢[X25, X3]c + @23 (1 — {)x3x25.
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Here 09 = {2.123,124,2234, 234,34, 12332435, 223245, 123345, 1223475, 123425, 123324352 1245, 22345,
2345,345,5) and the degree of the integral is

a = 24a1 + 660 + 60as + 3204 + 44as.
8.8.13 The Dynkin diagram (8.46 i)
The Nichols algebra By is generated by (x;);er; with defining relations

x13=0; x14=0; x15=0; [[x235,x3]c, x3]c =0;
x4 =0 x5=0; x5=0; [xq3,x].=0;

(8.55)
x112=0; x332=0; x33¢ =0; [[x435,x3]c, x3]c = 0;
x553 = 0; x%:O; xf:O; xi:O, 056(91.
Here 09 = {1,3,1223%4,3%4,34,4, 1233475,23%4%5,123%45,23345, 123245, 122344252, 12345, 1235, 23245,
2345,235) and the degree of the integral is
a=24a; + 44y + 84as3 + 3204 + 44as.
8.8.14 The Dynkin diagram (8.46 j)
The Nichols algebra By is generated by (x;);c1; with defining relations
x13 =0; x14 = 0; x15 =05 [[x23,x235]c, x3]c = 0;
x24 = 0; x25 = 0; x5 =05 [x@3),x2]c = 0;
5 (8.56)
xs53=0; [x@4),x3]le =0; x7=0; [x435,x3]c = 0;
x%:O; x32=0; xf:O; xi:O,ani.
Here 0f = (12.23,123%4,22324,234,4,12333425 2233425 1233345,223345,1223245,123344252, 12345,
1235, 23245, 345, 35) and the degree of the integral is
a = 24a1 + 660 + 84a3 + 3204 + 44as.
8.8.15 The Dynkin diagram (8.46 k)
The Nichols algebra By is generated by (x;);e1; with defining relations
x3=0; x14=0; x15=0; [[[x1235.x3]c, x2]¢, x3]c = 0;
x4 =0; x25=0; x45=0; [x@4),x3]c = 05
(@73 (8.57)
x221 =0; x23 =0; x553 =0; [x435,x3]c = 0;
x12=0; x32=O; xf:O; xi:O,(xGOi.

@ Springer



486 N. Andruskiewitsch, I. Angiono

Here 0 = (2,123,12223%4, 1234,23%4,4,122333425, 122233425, 12233345, 12223345, 1223245, 1223344252,
123245, 2345, 235, 345, 35) and the degree of the integral is

a = 44ay + 660 + 84a3 + 3204 + 44as.
8.8.16 The Dynkin diagram (8.46 1)
The Nichols algebra By is generated by (x;);cr; with defining relations

x4=0; x3=0; x4=0; x;5=0; [xu3),x]c=0;

x5 =0; x332=0; x334=0; x335 =0; X553 = 0; (8.58)
x4s=0; x7=0; x3=0; x=0; xi:O,ani.
Here 0% = (12,123,3,1234,34,4,1223%45, 12334252, 123334252, 12333452, 23245, 1232457, 27334252,

2345,2233452, 2232452 235) and the degree of the integral is
= 24a + 660y + 84as3 + Sdoy + 44as.

8.8.17 The Dynkin diagram (8.46 m)

The Nichols algebra By is generated by (x;);e1; With defining relations
x13 = 0; x14=0; x15=0; [[x43,%435]c, x3]c = O;
x24 = 0; x5 =0; x45=0; [xe4,x3]1c=0;

(8.59)

[xa3),x2]e =0; x112=0; x553 =0; [x235,x3]c = 0;

x5 = 0; x3=0; x}=0; xi:O,ani.

Here 0 = {1.123,23,1234,234,4,123%45, 122344252 23245, 12232452, 12334252, 1233452, 2334252, 233452,
345,32452,35) and the degree of the integral is

a = 24ay + 440y + 84as3 + Sday + 44as.
8.8.18 The Dynkin diagram (8.46 n)
The Nichols algebra By is generated by (x;);er; with defining relations

x4=0; x3=0; x4=0; x15=0; x2=0;
x5 =0; x203=0; x330=0; x333=0; x335=0; (8.60)

x45 = 0; x553 =0; x12 =0; xf =0; xg =0, a e (’)i.

Here 0f = (2.23,3,234,34,4,1223%45, 1223344252, 1223334252, 122333452, 123245, 1222334252, 122233457,
12345, 122232452, 1235, 232452} and the degree of the integral is

A = 48a1 + 66y + 8403 + 54ay + 440s.
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8.8.19 The Dynkin diagram (8.46 i1)

The Nichols algebra By is generated by (x;);c1; with defining relations

xi3=0; xia=0; x15=0; [[[x4325.%2]c, x3]c, x2]c = 0;
x4 =0; x35=0; 2x45=0; [x13),x2]c = 0; 8.61)
x112=0; x330=0; x333=0; [x125,x2]c = 05
X3 =07 xs0=0; x3=0; x; =0, ae0].
Here 09 = {1,3,122234,12234,4,2734, 122432435, 122432425, 12223425, 1223475, 223425, 1224324352,

1222345, 122345, 45, 22345, 5) and the degree of the integral is
A =44a; + 84wy + 60asz + 3204 + 44as.

8.8.20 The associated Lie algebra

This is of type B4 x Aj.

8.9 Type g(8, 3)

Here 0 =5, ¢ € G}. Let

1| ersss, p=(-1,1,1,1,1) e G3.

Let g(8,3) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
We know [29] that sdim g(8, 3) = 55|50. There are 20 other pairs of matrices and
parity vectors for which the associated contragredient Lie superalgebra is isomorphic
to g(8, 3). We describe now the root system g(8, 3) of g(8, 3), see [3] for details.

8.9.1 Basic datum and root system

Below, Ds, CE5, As, Cs, Eéz), Ff), C;‘H', 171 and »T are numbered as in (4.23),
(3.16), (4.2), (4.15), (3.9), (3.10), (3.17) and (3.11), respectively. The basic datum and
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the bundle of Cartan matrices are described by the following diagram:

1 1
saF) 1 s o su(As) 4 saGT)
[ ] [ ] [ ] [ ]

ai ary alo a4
3
Ds 5 Ds
e ————— o
ayy a
2 2
(2)
Eg 5 As 4 2T 3 Ds 5 CEs
° ° ° ° °
az as ap azi aig
1 1 1 1 1
(2)
Eg 5 As 4 2T 3 Ds 5 CEs
° ) ° ° °
az ag a3 aie a9
2 2 2
2)
Eg 5 A.s 4 z.T
as ag ais
3 3
(et s Cs
° —— o
ay ag

Using the notation (3.1), the bundle of root sets is the following:

250 = 53411, 12,2,123,23, 3, 1222324, 122324, 12324, 1234, 23%4, 234, 324, 34, 4, 122333435, 122334435,
12223%435,12234435,122334425,12223%425, 1223%4%5, 122333425, 122233425, 1324364452,
122232425, 12223245, 12233425, 12232425, 1223245, 1223304452 1223394452 1223394352
1233425, 233425, 1223344352 1232425, 232425, 1222344352 122344352 123245, 12345,
23245, 2345, 32425, 3245, 345, 45, 5)),

A =(1,12,2,123,23, 3, 1234, 1223242, 123242, 12342, 234, 23242, 2342, 34,342, 4, 12334475,
12334445, 12333445, 12233445, 2233445, 12333435, 12233435, 2233435, 1224394952
124354952 12232435 12232425, 2232435 2232425 123394052 123344652 123344552
1232435, 232435, 123344452 1232425, 232425, 123334452 122334452 123425, 12345,
22334452 23425, 2345, 345, 345, 45, 5),

A9 =(1,12,2,123,23,3,1234, 1223242, 123242, 12342, 234, 23742, 2342, 34,342, 4, 12233445,
12233445, 1223334%5,1222334%5, 12233445, 122333435, 122233435, 12233435, 1324354652,
122232435, 122232475, 1224354552 112232435, 12232425,1223394852 1223344652,
1223344552 1232435, 232435, 1223344452 1232425, 232425, 1223334452 1222334452
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122334452 123425, 12345, 23425, 2345, 3425, 345, 45, 5),

A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12232425, 1232475, 123475, 12345, 123344452, 123334452,
123334352 2232425, 122334452, 122334352 232425,122439465% 12334453 122324352,

12324352 22334452 23425 3425 12437405% 123354054 123344453 22334352 123344054,
123334453 22324352 122334453 2324352 123344554 122324252 12324252 1234252,
22334453 2345,2324252 234252 34534252 45, 5),

A% =1(1,12,2,123,23, 3, 1234, 1223242, 123242, 12342, 234, 23242, 2342, 34,342, 4, 12734475,
1223%4%5, 12233445, 1233445, 23345, 12233435, 1233435, 233435, 1223354052 123354052,
12232435 12232425, 122354952 1232435, 1232425, 122344652 122344552 232435 32435 122344452,
232425,324%5, 122334452 1233452 123425, 12345, 2334%52 23425, 2345, 3425, 345, 45, 5),

2% = (1,12,2,123,23, 3, 1234, 234, 34, 4, 122232425, 12232425, 1223344452, 1223334452 1223334352,
1232425, 1222334452 1202334352 123425, 1222324352 12345, 13243594054 1223344553,
1223344453 1203334453 1202334453 122334452 122334352 1204354054 1223354054,

237475, 127324352 12233%405% 23425, 12324352 3425, 12233%455% 122334453, 122324252,
12324252 1234252 2324352 2345, 2324252 234252 345, 34252 45,5},

A% =(1,12,2,123,23,3, 1234, 1223242, 123742, 12342, 234,23%4%, 2342 34,342, 4, 12733455, 1223%4%5,
1223245, 123%4%5,23%4%5, 12233435, 12232435, 1223344852 123344652 12232425, 1237435,
1223%4952 1232425 232435 232425, 122334052 122334552 123435, 23435, 3435,

12233452 123425, 122324457 123%4%5%, 12345, 23425, 23%4%5%, 2345, 3425, 345,475, 45, 5),

A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12232425, 1232475, 123425, 12345, 122334452, 122334352
232425, 122324%52 122324352 23425, 122324252 2345, 1223344054 123344054 122334953
122334453 122324%53 12324452 12324352 1234352 12324252 1234252 122344054,

122334054 122334554 12324453 2324452 2324352 3425 2324252 345,23%4%53 234352,
234252 34352 34252 425,45, 5),

A =1{1,12,2,123,23,3,1234,234, 34, 4, 12232425, 1232475, 123425, 12345, 122344452, 122334452
122334352 232425 122324352 23425, 122324252 2345, 122339405% 123354054 122344553
122344453 122334453 12334452 12334352 12324352 12324252 1234252, 122354054,

122344054 122344554 12334453 2334452 2334352 32425 2324352 3425 2334%53,
2324252 234252 324352 345 34252 455},

2510 = 534(11,12,2, 123,23, 3, 1222324, 122324, 12324, 1234, 223%4, 2324, 234, 34, 4, 122435435 122434435,
120334435 12334435 120434425 120334425 12334425, 122333425, 120233425, 1325304452
122232425, 12273245, 12333475, 1229364452 12233425, 1224354452 1224394352 2233425,

12232425 1204344352 2232425 1223245223245, 1223344352 123344352 1232425, 123245,
12345, 232425, 23245, 2345, 345, 45, 5)),

25 = 534(11,12,2, 123,23, 3, 122374, 123%4, 1234, 2%3%4, 2374, 234, 324, 34,4, 12335435, 1233%435, 12234435,
2234435 12334425, 12234425, 2234425, 12333425 12233425, 124304452 12232425 1223245,

2233425 2232425 223245, 123304452 123394452 123394352 1233425 233425, 123344352,
1232425, 232425, 122344352 123245, 12345, 22344352 23245, 2345, 32425, 3245, 345, 45, 5)),

2512 = (1,12,2,123,23, 3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 1233%4252 123334252, 12333452,
223245, 122334252 12233457, 23745, 1224394354 123344353 122324252 12324252 123344753,
12232452 1232452 124354354 123354354 22334252 9233452 123334253 122334253 123344354,
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1233%425% 123452 2345, 2232457, 235, 22334253, 2324252, 232457 23457, 345, 45, 3452, 35, 5},

A58 ={1,12,2,123,23, 3, 1234, 234, 34, 4, 12223245, 1273245, 1223344252 1223334252 122333452,
123245, 1222334252 122233452 12345, 1222324521235, 132#37435% 1223344353 1223344253,
1223334253 1202334253 122334252 122324252 12324252 12243594354 1223394354,
12233452 23245, 12233%435% 12232452 2345, 12233%4%5% 122334253 1232452 123452,
2324252 345, 45, 232452, 2345%, 235, 3452, 35, 5,

A5 = 53411, 12,2, 123,23, 3, 122234, 12234, 1234, 124, 2734, 234, 24, 34, 4, 122433435, 120432435, 122332435,
12332435, 122432425, 122332425, 12332425, 122232425, 12232425, 2232425, 1325334452,
1225334452 1204334452 1204334352 12033425 12023425, 1222345, 1233425, 1223425, 1224324352
223425, 122345, 22345, 1223324352 123324352, 123425, 12345, 1245, 23475, 2345, 245, 345, 45, 5)),

A5 = {1,12,2,123,23,3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 122344252, 122334252, 12233452,
23245, 122324252 12232452, 2345, 235, 122335435 123394354 122344353 122344253, 122334253
12334252 ,123%4252 1233457, 1232452, 123452, 1223%435%, 122344354 122394254 12334253,
2334252 233452 3245, 2324252232452 233425323452 345, 45, 32452, 345235, 5},

A9 = {1,12,2,123,23,3, 1234, 234, 34, 4, 17223245, 1223245, 1223344252 1223334252 122333452,
123745, 1227334252 122233452, 12345, 122232452, 1235, 1324304354, 1223354353 1223394253,
1223344253 1222344253, 122344252 122334252 12334252 1224304354 1223304354 12233452,
23%45,123%452 3245, 1223394354 1223354254 122344253 12232452, 1237452, 2334752, 2345,
345,23345%, 232452, 235, 32452, 35, 5},

A9 = {1,12,2,123, 23,3, 1234, 234,34, 4, 17223245, 1223245, 12233%4252 1223334252 122333452,
123245, 1222334252 122233452, 12345, 122232452, 1235, 1327304354 1224334353 1204354253,
1224344253 1223344253 123394252 123334252 122334252, 1225364354 12333452 223245,
1224384354 12233452, 23%45,12243%435% 1229394254 123344253 12232452 1232457,

22334252 2345, 345,2%3345% 2232457 237452, 235,35, 5,

2518 = (1,12,2,123,23, 3, 122324, 123%4, 1234, 22324, 23%4, 234, 3%4, 34, 4, 12337435, 1233745,
12334425, 12234425, 2234425, 12333425, 12233425, 2233425, 1233425, 233425, 1204304352
124364352, 123364352 123354352 1233345, 1223345, 1223245, 123345, 123245, 12345, 12%3%4252,
123344252 1223442521235, 223345, 23345, 223245, 23245, 2345, 235, 3245, 345, 35, 5},

299 = {1,12,2,123, 23,3, 122%3%4, 122324, 12324, 1234, 23%4, 234,374, 34, 4, 122335435 122335425,
122334425, 122234425, 12234425, 122333425, 122233425, 12233425, 1233425, 233425, 1324304352
1224304352 1223304352 1223394352 12233345, 12023345, 12223245, 1223345, 1223245, 12233%4252,
123345,23345, 1223344252, 123245, 122344252, 12345, 1235, 23%45, 2345, 235, 3%45, 345, 35, 5},

A0 = (1,12,2, 123,23, 3, 1227324, 127324, 12324, 1234, 22324, 2324, 234, 34,4, 122439435, 122939425,
122434425, 122334425, 12334425, 122333425, 12333425, 122233425, 12233425, 2233425, 1329304352,
1225364352 1224364352 1224354352 12233345, 12223345, 12223245, 1233345, 1223345, 1224394252,
223345, 1223245, 223245, 1223344252 123344252 123245, 12345, 1235, 23245, 2345, 235, 345, 35, 5),

AV =(1,12,2,123,23, 3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 12334252, 123334252, 12333452,
223245, 122344252, 122334252 1204304354 123354353 12334252 12233452, 123394253 1233452,
23245,3245, 124304354 123304354 123344253 22334252 2233452 122344253, 2334252 233452,
123334354, 123334254 12232452, 1232452, 223442532345, 345, 2232452, 232452, 235, 32452, 35, 5.
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8.9.2 Weyl groupoid

The isotropy group ata; € X' is

ay al aj
Wiar) = (51" 626364626564636162645553656462616364555264636261, S5+ G5
Si's S5 ) = ZJ2 x W(Fy).

8.9.3 Incarnation

We set the matrices (q("))ieﬂ21 , from left to right and from up to down:

o o (8.62)
-1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ -l -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ -1
0] (o] o [e] (o] (o] [e] (e} ] (o]
-1 ¢ ¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ -1
0] (o] (o] [e] 0] (o] o (o] (] (o]

¢ 7T ¢ T -1 ¢ ¢ T -1 ¢ ¢ -1 ¢ -1 T -1 ¢ -1
o] o) (o) o) (o) (o) o () (o) o]
¢ ¢ -1 ¢ -1t ¢ ¢ ¢ -1 ¢ -1 ¢ ¢t ¢ ¢ ¢ ¢
o] (o) o] (o) o] () o) o] o) (o)
I3 R
(] (o]
¢ ¢
¢ ¢
-1 ¢ ¢ ¢ -1 ¢ -1 -1 ¢ -1 ¢ -1 ¢ -1
(o] (o] [e] (o] o (o] (o)
-1 E
(o] ]
¢
N N
[ S S S Y SR ¢ S SRS L S S SR |
© o ° o o o o o
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—1 -1
o] o)
T T
-1 ¢ ¢ ¢ -1 T ¢ ¢ ¢ -1 T ¢ T ¢
(o] 0] o (o) [e] (] (o] (]
-1 -1
[e] [e]
I3 T
-1 ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢ T g
o] [e] [e] o o (o] (] o
—1 —1
(e} [e]
¢ 3
¢ ¢ —-1 T -1 T ¢ -1 ¢ -1 ¢ -1 ¢ ¢
o] o] o] [e) o o (o) [e]
Now, this is the incarnation:
a; — S34(qi), i €{1,10,11, 14}, a; — q(i), otherwise.

8.9.4 PBW-basis and dimension

Notice that the roots in each A‘jr", i €Iy, are ordered from left to right, justifying the
notation B, ..., P49.
The root vectors xg, are described as in Remark 2.14. Thus

{xg;‘fj .. xgjxgll |0 <ng < N,gk} .
is a PBW-basis of B4. Hence dim B, = 2243246 = 2293%.

8.9.5 The Dynkin diagram (8.62 a)

The Nichols algebra By is generated by (x;);c1; with defining relations

x221 =05 x03=0;  x332=0; x;=0,i<j,qj=1
X443 = 05 X445 = 0; [[x@4), x3]cs x3]e = 05
. . 2 . N,
[x3345,X34]c = 0;  x554 = O; =0, x°=0,aecOl. (8.63)
Here o0 = (2,23,3,223%4,2324,234,324,34,4,2%3%435,223%425, 12233425,223%425, 2232425, 223245,

233425, 232425, 22344352 23245, 2345, 32425, 3245, 345, 45, 5} and the degree of the integral is

=291 + 102 + 171a3 + 118a4 + 61as.
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8.9.6 The Dynkin diagram (8.62 b)

The Nichols algebra By is generated by (x;);c1; with defining relations

x221 = 05 x003=0; x330=0; x;;=0,i<j,q;=1
x334 =0;  xaa5 =0;  [[x@35), X4lc, xale = 0; (8.64)

. 2 . 2 . N, q
[x4432,%43]c =0;  x7=0; x5=0; x,°=0, xeO].
Here 0f = (2.23.3,1234,234,23242 2342 34,342 4, 122334%5, 12233435, 1224394652 12232435, 12232425,

1223354652 1293344652 1223344552 1232435, 1223344452 1232425, 1223334452 1222334452 123425, 12345} and
the degree of the integral is

a="T5a; + 1170y + 15503 + 1894 + 64as.
8.9.7 The Dynkin diagram (8.62 c)
The Nichols algebra By is generated by (x;);c1; with defining relations

[x13), x2]e =0 x33:2=0; x334=0; x;;=0,i<j,q;j=1
xags =07 x{=0; [[xas), xale, x4le = 0; (8.65)

. 2 . 2 . N, q
[x4432, x43]c =0; x5 =0; x5=0; x,*=0, ae€O].
Here 0 = (12,123, 3, 1234, 123242, 12342, 234, 34, 342, 4, 12233445, 12233435, 1224354052 12232435, 12232425,
123354052 123344052 123344552 232435, 123344452 232425 123334452, 22334452 23425 2345y and the
degree of the integral is
=440 + 117a + 15503 + 189a4 + 64as.
8.9.8 The Dynkin diagram (8.62 d)

The Nichols algebra By is generated by (x;);c1; with defining relations

x221 =0; x203=0; x332=0; xij=0,1i<],qj=1,
. 2 . — 0
x334 =0;  x7=0; [[xs54,x583]c, x4]c = 0; (8.66)
2 _ . 2 _ A Ne _ q
x; =0; x5 =0; X, =0, a€O].
Here 0 = (2,23, 3, 1234, 12232425, 1223344452 1223334452 1232425, 1222334452, 123425, 12345, 1223344753,
122334352 1224354654, 1223354654 122324352 1223344054 12324352, 1223344532345, 2324252 234252 345,

34252, 45) and the degree of the integral is

a="T5a; + 1170 + 15503 + 189y + 127as.

@ Springer



494 N. Andruskiewitsch, I. Angiono

8.9.9 The Dynkin diagram (8.62 e)

The Nichols algebra By is generated by (x;);c1; with defining relations

. . 2 . : s~ .
x112 = 05 [xa3),x2le =0; x5 =0; x;;=0,i<j,qj=1;
. . 2 . .
X445 = 05 [xp4),x3]lc =0;  x3 =05 [[x35), X4]c, X4l =0;  (8.67)
. . 2 . N, q
[x443,x43]c = 07 [xaa32,x43]c = 0; x5 =0; x;° =0, « € OF.
Here 0f = (1,123,23,1234,1223%42 12342, 234,2342, 34,4, 12233445, 12233435,12233%4652 123334052,

1232435, 1232425, 122344652 122344552 232435, 122344452 232425 12334452 2334452 3425 345y and the
degree of the integral is

=440 + 117a + 15503 + 189a4 + 64as.
8.9.10 The Dynkin diagram (8.62 f)

The Nichols algebra By is generated by (x;);c1; with defining relations

. . 2 . . .~ .
x332 = 0; x334 = 0; xp =05 xij=0,1 <], qij=1
2 . 2 . .
x5 =0; x; =05 [[x54,%543]c, X4l = 0O; (8.68)
. 2 . N, q
[xa3)x2le =0; x5=0; x,*=0, a€O].
Here 0 = {12,123, 3,234, 12232425, 12345, 123344452, 123334452, 122334352 232425, 1224394654, 123344353,

122324352 22334452 23425 123354054 123344054 122334453 2324352 12324252 12342522345, 345, 34252, 45)
and the degree of the integral is

a=44a1 + 117ar + 155a3 + 189a4 + 127as.
8.9.11 The Dynkin diagram (8.62 g)

The Nichols algebra By is generated by (x;);e1; with defining relations

X112 =0; x4443 =0; [xa,x3le =0; x;;=0,i<j,qj=1;
. . . N, .
x221 =05 x4445 = O; x203 = 0; xMe =0, e 0 (8.69)
2 . 2 . a
x3=0; x5=0; [x3,x445]c = (¢ — §)q3ax4x35) — qas[x3s), Xalc-
Here 0] = {1.12,2,1234,1223%42, 123242, 234,23%42 34,4, 122334%5, 12232435, 1223344652 123344652,
1232435, 122344052 232435, 122334952, 123425, 122324452, 1232452, 23425, 2324452 3425, 45) and the degree

of the integral is

A= 44y + 84ar + 1203 + 189a4 + 64as.
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8.9.12 The Dynkin diagram (8.62 h)

The Nichols algebra By is generated by (x;);c1; with defining relations

x4y, x31e =0;  x112=0; x001=0; x;;,=0,i<j,qij=1
x203 =05 x445 =0;  [[x35), Xalc, xa]lc = 05 (8.70)

[x445, %451 = 0;  x3=0; x2=0; xM=0, «c0Ol.
Here 09 = (1,12,2,4,1234%5, 12345, 122324452, 122324352 23425, 122324252, 2345, 1223344054, 123344054,
122334553 122334453 12324452 12324352 12324252 122344654 2324452 2324352 3425 2324252 345, 45) and
the degree of the integral is
a=44ay + 84wy + 1203 + 1894 + 127a5.
8.9.13 The Dynkin diagram (8.62 i)

The Nichols algebra By is generated by (x;);c1; with defining relations

x112 =05 [x24), x3]c = 0; x5 =0; xij=0,i<j, qj=1
[x(13), 2] = 0; x3=0; [[xs4, ¥sa3le, xale = 0;  (8.71)

2 . . 2 . N,
x5 =0; [[x34, x35)le, x4l = 0; x5 =0; x* =0, « € Ol.
Here 0§ = (1.123,23,34,123%425,12345, 122344452 122334352 232425, 122324252 2345, 12233%405%,
123354054 122344553 122334453 12334452 12324352 1234252, 122344654, 2334452 2324352 3425 234252,
345,45) and the degree of the integral is
A= 4401 + 84ar + 1553 + 189a4 + 127 as.
8.9.14 The Dynkin diagram (8.62 j)

The Nichols algebra By is generated by (x;);c1; with defining relations

[xa3), x2]e = 0; x112 =0;  x443 = 0; xij=0,1<j,qij=1,
X445 = 0;  x554 =05 [[x23,x04)]c, x3]c = 0; (8.72)
x%:O; x%:O; xéVO‘:O,ani.
Here 0 = {1,123,23,12223%4, 122324, 1234,2%3%4,234, 4, 172434435, 12243%425,122333425, 122232475,
12223245, 12333425, 12233425, 12232425, 1204344352 2232425 1223245, 223245, 12345,2345,45,5) and the

degree of the integral is

A ="T501 + 1460 + 171a3 + 118a4 + 61as.
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8.9.15 The Dynkin diagram (8.62 k)

The Nichols algebra By is generated by (x;);c1; with defining relations

[xa3), x2]le =0, x330=0; x443=0; x;1=0,i <], gij = 1;
X445 = 0; xs54 =0;  [[x@35), x4)c, x4]c = 05 (8.73)
3345, x34le =0, xf=0; x3=0; x}*=0, aecO].
Here 0 = (12, 123,3,1222324, 12324, 1234, 3%4, 34, 4, 172234435, 122234425, 122233425, 122232425, 12223245,
12233425, 1233425, 1232425, 1222344352 123245, 12345, 32425, 3245, 345, 45, 5) and the degree of the inte-

gral is
a="T5a; + 1020 + 1713 + 118y + 61as.

8.9.16 The Dynkin diagram (8.62 1)

The Nichols algebra By is generated by (x;);c1; with defining relations

x01=0; xg3=0; [xe4.x3]le =0 x;=0,i<j,q;j=1
x5 =0; xams =0; [x235,x3]c =0; xle =0, « € OF; (8.74)
2 L2 L2 . =
xi=0; x3=0; x5 =0; x@35 = q45¢[x35, X4lc + g34(1 — §)x4x35.
Here 0% = (2.123,234,34,1223245,12233%4252, 122333452, 123245, 122233452, 12345, 1235, 1223344253,

122334252 1224354354 1223354354 12232452 2345, 1223344254 122334253 1232452 2324252 345,23452, 3452,
5y and the degree of the integral is

a="T5a; + 1170y + 15503 + 1274 + 95a5.
8.9.17 The Dynkin diagram (8.62 m)

The Nichols algebra By is generated by (x;);c1; with defining relations

. . 2 . : s~ .
x443 =05 [xa3px2le=0; x{=0; x;=0, i<}j, qgj=1
. . 2 . 2 . N, q.
X445 = 0; [X(24),X3]c =0 Xy = 0; X5 = 0; Xy ¢ = 0, xa € O); (8.75)
. .2 . -
[x235, x3le = 0; x5 = 0; x35) = qas¢[x35, X4]c + g34(1 — §)xqx35.
Here 0 = (12,23, 1234,34, 1223245, 12345, 123344252 12333452, 122334252, 23245, 12243%435%, 12324252,
123344253 12232452 123354354 2233452 122334253, 123344254 123452, 2345, 235, 232452, 345, 3452, 5) and

the degree of the integral is

a=44o1 + 117a + 15503 + 127a4 + 95as.

@ Springer



On finite dimensional Nichols algebras of diagonal type 497

8.9.18 The Dynkin diagram (8.62 n)

The Nichols algebra By is generated by (x;);c1; with defining relations

[x@4), x3]e =0; x112=0; x221=0; x;;=0, i</, qgij=1
24) J J
. . . 2 . N, q.
[x435,x3]1c = 0;  x203=0; x205=0; x5=0; x,*=0, xacO]; (8.76)
. 2 . =
X443 = 0; x5 =0;  x235 = g35¢ [x25, x3]c + g23(1 — {)x3x05.
Here 0 = (1,12,2,122%34, 12234, 1234,2%34,234, 34, 122433435, 122432425, 122332425, 12332475, 12223245,
12232425, 2232425, 1224334352 1202345, 1223425, 122345,22345, 12345, 2345, 345, 5) and the degree of the

integral is
= T5c1 + 1460 + 118a3 + 61ag + 95as.

8.9.19 The Dynkin diagram (8.62 i1)

The Nichols algebra By is generated by (x;);cr; with defining relations

) ) .2 § L )
x112=0; x330=0; x443=0; x3=0; x;;=0,i<j,q;j=1
x334=0; xyus=0; xa5=0 x3=0; x}*=0 aecO]; (8.77)

[x(13), x2]e = 0;  x35) = qasC[x35, xale + q3a(1 — £)xax3s.

Here 0§ = (1.3,1234,234,123%45, 12345, 122344252, 1233452, 122334252 23245,122339435%, 122324252,
122344253 1232452 123354354 233452 122334253, 122344254 123452, 345, 35, 232452, 2345, 23452, 5} and the
degree of the integral is

a=44a1 + 84ar + 155a3 + 127a4 + 95as.
8.9.20 The Dynkin diagram (8.62 o)

The Nichols algebra By is generated by (x;);er; With defining relations

[x@4y, x3]lc =05 x201 =0; x223 =0; xij=0,i<j,q;=1
xss3=0;  xf =0;  [[x43.%435]c, X3]c = 0; (8.78)

235,030 =0;  x3=0; x3=0; x)e=0, aecOl

Here 0] = (2,123, 1234, 4, 1223245, 123245, 123334252, 12333452 122334252, 1224364354 12334252, 12233452,
123345223245, 123344253 122344253, 123354354 123354254 2345, 345, 2232452232452 235,32452,35) and
the degree of the integral is

a=44o1 + 117a + 186a3 + 127a4 + 9Sas.
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8.9.21 The Dynkin diagram (8.62 p)
The Nichols algebra By is generated by (x;);c1; with defining relations
x112=0; x3320=0; x334 =0; xij=0,i<j,qj=1

x335 = 0;  xs53 =05 [x13),x2]c = 0; (8.79)
x%:O; xf:O; xév‘”=0,a€(’)j_.
Here 0©f = (1.3,34,4,1223245,123%45, 1222334252 122233452, 12345, 122232452, 1235, 1223344253,

122334252 1224364354 12233452 23245, 1224354354 1224354254 123344253 12232452 22334252 2345, 2233452,
2232452 235) and the degree of the integral is

A= T501 + 1460, + 1863 + 127a4 + 9Sas.

8.9.22 The Dynkin diagram (8.62 q)
The Nichols algebra By is generated by (x;);e1; with defining relations
[x(13), X2]c = 0; =00 xf=0; x;=0,i<j, gj=1

xss3=0; x3=0; [[x25,x3]c, x3]c = O0; (8.30)

. —0- 2 _ . Ny __ q
[[x435, x3]c, x3le =05 x334 =0; x;=0; x* =0, € O].
Here 0f = (12, 123,3, 1222324, 123%4, 1234, 324,34, 4, 122337435, 122335425, 122334425, 12234425, 122333475,

12233425, 233425, 1224304352 12233345, 1223345, 1223245, 23345, 123245, 23245, 2345, 235) and the degree
of the integral is

a="T5c1 + 1170 + 1863 + 61ag + 95as.
8.9.23 The Dynkin diagram (8.62 r)

The Nichols algebra By is generated by (x;);c1; with defining relations

x221 = 05 x023=0; x332=0; x;=0,i<j,q;=1;
x334 = 0;  xs553 =0;  [[x235, x3]c, x3]c = 0; (8.81)

. 2 _ 4. 2 _ . N,
[[xa35.%3le. x3)e = 0;  xf=0;  x3=0; x)*=0, a€Of.

Here 0f = (2,23,3,223%4,2324,234,3%4,34, 4, 12339435, 12335425, 12334425, 12234425, 12333425, 12233425,
1233425, 1224304352, 1233345, 1223345, 1223245, 123345, 123245, 12345, 1235, 23245} and the degree of the
integral is

a=44a1 + 1170 + 186a3 + 61ag + 95as.
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8.9.24 The Dynkin diagram (8.62 s)

The Nichols algebra By is generated by (x;);c1; with defining relations

. 2 . . : s~ .
x112=0; x3=0; [xqu3),x2]c=0; xij=0,1<j,qj=1,
2 . . .
x5 =0; [xo4,x3]c =0; [[x23,x235]c, x3]c = 0; (8.82)
. 2 . . N, q
x553=0; x3=0; [x435x3]ce=0; x,*=0, xaec0].
Here 0f = (1.123,23,1222324,1223%4,1234,223%4, 234, 4, 122439435, 12243425, 122334425, 1233%425,

122233425 12233425 2233425, 1224304352 12223345, 1223345, 223345, 1223245, 123245, 23245, 345, 35) and the
degree of the integral is

A= T501 + 1460y + 1863 + 61ag + 95as.
8.9.25 The Dynkin diagram (8.62 t)

The Nichols algebra By is generated by (x;);c1; with defining relations

xa3=0; [xaz,x2le=0; x}=0; x;;=0,i<j,q;=1
[x@4y, x3]e = 0; %3 = 0;  [[x43, X435, x3]c = O; (8.83)

2 _ N . 2 _n. Ny __ q
x3=0; [x235,x3]c=0; x53=0; x,;*=0, axdecO].
Here 09 = (12,23,234,4, 1223245, 1223334252 122333452, 123245, 12345, 122232452, 1235, 1223344253,
122334252, 1224304354 12233452 23245,1223354354, 1223354254 122344253 1232452, 2334252 345,
233452, 32452, 35) and the degree of the integral is
a="T5ca; + 1170y + 186c3 + 1274 + 95a5.

8.9.26 The associated Lie algebra

This is of type F4 x Aj.

8.10 Type g(4, 6)

Here 6 = 6, ¢ € Gj. Let

2-10 0 00
10-10 00
S ]o-10 1 0 1] _ e B 6
A=100 21 2 —1ol€F%  p=CLLLLLDEGS
00 0120
00-10 02
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Let g(4,6) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
We know [29] that sdim g(4, 6) = 66|32. There are 6 other pairs of matrices and
parity vectors for which the associated contragredient Lie superalgebra is isomorphic
to g(4, 6). We describe now the root system g(4, 6) of g(4, 6), see [3] for details.

8.10.1 Basic datum and root system

Below, Ag, D¢, Eg and T are numbered as in (4.2), (4.23), (4.28) and (3.11),
respectively. The basic datum and the bundle of Cartan matrices are described by
the following diagram:

E¢ 2 E¢ 1 E¢
° ° °

az as aeg
3|
s456(Ac) 6 2T 4 Dg 5 De
° ° ° °
ai ar ap a4

Using the notation (3.1), the bundle of root sets is the following:

O = sus6({1, 12,2, 123,23, 3, 1234, 234, 34, 4, 12232425, 1232425, 123425, 12345, 232425, 23425, 2345,

Ay

3425,345, 45, 5, 1223344536, 122334526, 1223343526, 1223243526, 1232435%6, 23243 5%,
1223242526, 123242526, 2324256, 12342526, 2342526, 3425%6, 12233445362, 12232456,
12324256, 1234256, 123456, 2324256, 234256, 23456, 34256, 3456, 456, 56, 6}),

A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 122334356, 122324356, 122324256,
12232426, 12324356, 12324256, 1232426, 2324356, 2324256, 2324%6, 12237445262 1223344562,
1234256, 234256, 34256, 1223343562, 123456, 23456, 3456, 1223243562, 123243567, 1234%6,
12346, 23243562, 23426, 2346, 456, 3426, 346, 46, 6},

A% =(1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 12234256, 122324256, 12232456,
1223246, 12334256, 2334256, 12324256, 1232456, 123246, 12234435262 1223443562, 2324256,
324256, 123456, 12346, 122342562 1223342562, 123742562, 1236, 232456, 32456, 23246, 3246,
23342562, 23456, 2346, 236, 3456, 346, 36, 6},

A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223343526, 1223243526, 122324252,
122324256, 123243526, 123242526, 12324256, 23243526, 23242526, 2324256, 12233445362,
12342526, 23425%6, 342526, 12233445262 12233435262 1234256, 234256, 3456, 12232435262,
1232435262, 123456, 12346, 232435262, 23456, 2346, 3456, 346, 456, 46, 6},

AP = {1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223334256, 1222334256, 1222324256,
122232456, 17273746, 122334756, 122324256, 12737456, 1223246, 12233445262 12233443562,
12324256, 2324256, 12233%42 567, 1232456, 232456, 12273342562, 123456, 23456, 12273%4% 567,
1223342567, 123746, 12346, 1236, 3456, 23246, 2346, 236, 346, 36, 6},

A% =(1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 123334256, 122334256, 122324256,
12232456, 1223246, 22334256, 22324256, 2232456, 223246, 12334435262 1233443562 12324256,
2324756, 1233%47567, 1237456, 232456, 1233342562, 123456, 23456, 1273347567, 123746, 12346,
1236, 223347567, 3456, 23246, 2346, 236, 346, 36, 6,

AT =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 122334256, 122324256, 12232456,
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1223246, 12324256, 1232456, 123246, 2324256, 232456, 23246, 12233435262, 1223343562, 1234256,
234256, 34256, 1223342562, 123456, 23456, 3456, 1223242562, 123242562, 12346, 1236,
23242562, 2346, 236, 456, 346, 36, 46, 6}.

8.10.2 Weyl groupoid
The isotropy group at a3 € X is
Wi(a3) = (51° 6263665456535261. 657, 657, 642, 652, 6¢*) = W (D).

8.10.3 Incarnation

We set the matrices (q(i))ieﬂ7 , from left to right and from up to down:

¢ ¢
(] [e]
I3 I3
¢ ¢ ¢ttt -1 ¢ -1 ¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢
(o] 0] (o] (] 0] 0] (o] (o] (] (o]
Z ¢
o (o)
I3 z
¢ ¢ ¢t ottt -1 -1 ¢ -1 ¢ ¢ ¢ ¢ ¢ ¢
[e] 0] [e] (e} [e] [e] 0] (o] (o] [e]
4 -1
(o] o]
7 N
-1 ¢ ¢ ¢ ¢ ¢t ¢ ¢ ¢ ottt ¢t -1 ¢ =17t ¢
(o] [e] (e} [e] (e} o] [e] [e] (e} [e]
(8.84)
Now, this is the incarnation:
1y. . @ ;e1
ay — s456(q°); ai—q", 1 €lp7.

8.10.4 PBW-basis and dimension

Notice that the roots in each Afﬁ , 1 € I, are ordered from left to right, justifying the
notation f, . .., Bae.
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The root vectors xg, are described as in Remark 2.14. Thus
{xgjg .. xgjxgll |0 <ng < N/gk} .
is a PBW-basis of By. Hence dim B, = 216330,
8.10.5 The Dynkin diagram (8.84 a)
The Nichols algebra By is generated by (x;);e1, With defining relations

xi =0 x01=0; x;=0,i<j,q;=1
x23=0; x33=0; [[[x(ZS)’ X4le, x3]es Xale = 05

8.85
x334 =0;  xs554 =0;  [[[x6543, x4]c, x5]c, x4]c = 0; (8:85)

x556 = 0; X665 = 0; xf =0; xg =0, e Oi.
Here of = (1,12,2,123,23,3, 12232425, 1232475, 123425, 237425, 23475, 3425, 5, 1223344536, 122334452,
1223242526, 123242526, 23242526, 12342526, 2342526, 342526, 12233445362, 122324256, 12324256, 1234256,
2324256, 234256, 34256, 56, 6) and the degree of the integral is

a = 3601 + 68an + 963 + 12004 + 845 + 44w.
8.10.6 The Dynkin diagram (8.84 b)

The Nichols algebra By is generated by (x;);ej, with defining relations

[xs46, x4lc =0;  x201 =0; x203=0; x;;=0, i<j,q;j=1;
x332 = 05 x334 = 0; xe64 = 0:  [[[x2346, X4]c, x3]c, x4lc = 0;  (8.86)

. . 2 ) .43 q
[xG35), xale =0; x112=0; x5=0; x;=0; x;=0, xe€O].
Here ©f = ({1.12,2,123,23,3,12345,2345, 345,45, 122334356, 122324356, 12232426, 12324356, 123246,
2324356, 232426, 12234445262, 1223343562, 123456, 23456, 3456, 1223243562, 123243562, 123426,
23243562, 23426, 456, 34%6, 6} and the degree of the integral is
A = 36a1 + 68ar + 9603 + 12004 + 4405 + 62a.
8.10.7 The Dynkin diagram (8.84 c)

The Nichols algebra By is generated by (x;);e1, With defining relations

[xa3), x2le =05 xaa3=0; xaas =0; x;;, =0, i<j,g;=1
[x236, x3]lc = 0;  x554 =0; x663 = 0;  [[[x5436, x3]c, X4]c, x3]c = 0;  (8.87)

[x@ay, x3le =0; x112=0; x3=0; x3=0; x2=0, a€Ol.
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Here 0 = (1.123,23,1234,234, 4, 12345,2345, 45, 5, 122324256, 12232456, 1223246, 12334256, 2334256,
12234435262, 1223443562, 324256, 123456, 12346, 1223442562, 123342562, 1236, 32456,  3246,23342562,
23456, 2346, 236, 6} and the degree of the integral is

= 36a1 + 68ar + 120a3 + 84wy + 44as5 + 620.
8.10.8 The Dynkin diagram (8.84 d)

The Nichols algebra By is generated by (x;);e1, With defining relations

xi2=0; x»1=0; x0p3=0; x;=0,i<j,q;=1
x332=0; x334 =0; x443 =0; x445 =0; (8.88)

Xa6=0; xeos =0; x3=0; x; =0, aecOf.
Here of = {1,12,2,123,23,3, 1234,234, 34, 4, 1223343526, 1223243526, 1223242526, 123243526, 12324252,
23243526, 23242526, 12342526, 2342526, 342526, 12234445262, 12233435262, 12232435262, 1232435262, 12346,
232435262, 2346, 346, 46, 6) and the degree of the integral is
a = 36a; + 68ay + 96a3 + 12004 + 78a5 + 62a6.
8.10.9 The Dynkin diagram (8.84 e)

The Nichols algebra By is generated by (x;);ej, with defining relations

x330=0; x334=0; x336=0; x;;=0,0i<j,q;=1

X663 = 0;  x443 =0, x445 = 0;  [x13), x2]c = 0; (8.89)

x554 = 0; x12=0; x%:O; xi:O,ani.
Here o0l = {12.123,3,1234,34,4,12345, 345,45, 5, 123334256, 22334256, 22324256, 2232456, 223246,
12334435262, 1233443562, 12324256, 1233442562, 1232456, 1233342562, 123456, 123246, 12346, 1236, 223342562,
3456, 346, 36, 6} and the degree of the integral is

s = 3601 + 90ay + 12003 + 84y + 44as + 620.

8.10.10 The Dynkin diagram (8.84 f)

The Nichols algebra By is generated by (x;);e1, With defining relations

101 =0; x03=0; x332=0; x;=0,i<j,q;=1
X334 =0; x443 =0; x445 =0; x336 = 0; (8.90)

x663 = 0; x12 =0; x55¢0 =0 Xg =0, e Oj_

Here 0f = (2,23,3,234,34,4,2345,345,45, 5, 1223334256, 1222334256, 1222324256, 122232456, 12223246,
122334435262, 12233443562, 2324256, 12233442562, 232456, 12233342562, 23456, 12223342562, 3456, 23246,
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2346, 236, 346, 36, 6} and the degree of the integral is
a = 5601 + 90ar + 12003 + 84aq + 445 + 620.
8.10.11 The Dynkin diagram (8.84 g)
The Nichols algebra By is generated by (x;);e1, With defining relations
x112 =05 [x4).x3]e =0; x554 =0; x;; =0, <j,qj=1;
X010 =0;  [x236,x30c =0;  x3=0; [xsa6, xale = 0; 8.91)
03 =0, [xas)xule=0; xi=0; x)=0, a0l '
x¢ =0; X346 = qa6¢ [%36, Xale + q3a(1 — £)xax36 = 0.
Here 03 = (1.12,2,1234,234, 34, 12345, 2345, 345, 5, 122334256, 12232456, 1223746, 1232456, 123246, 232456,
23246, 12233435262, 1223343562 1234256, 234256, 34256, 1223242562, 123242562, 1236, 23242562, 236, 456, 36, 46}
and the degree of the integral is
A= 36a1 + 68ar + 96a3 + 84ay + 445 + 620.
8.10.12 The associated Lie algebra

This is of type Dg.

8.11 Type g(6, 6)

Here 0 = 6, ¢ € G. Let

2 -10 0 0 0
-12-10 0 0
o -12-100 6x6. B ]
A=10 0-12 0 —1|€F p=(1,1,1,1,-1,1) € G;.
000 0 0 1
00 0 -—2-12

Let g(6,6) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
We know [29] that sdim g(6, 6) = 78|64. There are 20 other pairs of matrices and
parity vectors for which the associated contragredient Lie superalgebra is isomorphic
to g(6, 6). We describe now the root system g(6, 6) of g(6, 6), see [3] for details.

8.11.1 Basic datum and root system
Below, A, Dg, Eg, EC", F{"", CE¢ 3T and 2T} are numbered as in (4.2), (4.23),

(4.28), (3.19), (3.18), (3.16) and (3.11), respectively. The basic datum and the bundle
of Cartan matrices are described by the following diagram:
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1
sse(F37) s sse(Ae) 6 3T
° ° °
aj ap ai
4
D¢ 1 D¢ 2 De 3 Dg
° ° ° °
aie a4 a atl
5 5 5 5
Eg Deg 2 Dg 3 CEg
° ° ° °
axo ary als as
1 4 4
E¢ 2Ty 2 2T
° ° °
ary ag aio
2 6 6 6
E(Z)/\
E¢ s5456(A6) 1 sas6(A6) 2 sa56(A6) 3 sas6(Eg )
° e —— o ——— e °
ag as a4 a3 a

Using the notation (3.1), the bundle of root sets is the following:

A% = 556((1, 12,2, 123,23, 3, 1234, 234, 34, 4, 12345, 122324252 12324252 1234252, 123452, 2345,
2324252 234252 23452, 345, 34252 3452 45,452, 5, 122334%5%6, 122334%5%6, 12233435%6,
12232435%, 123%435%6, 23%435%, 1223343536, 1223243536, 123243536, 23243576,
122334495562 12334455962 1223242536, 1223242526, 12234475562, 123242536,
123242526, 23242536, 23242526, 12233475962, 12233445062 12233445562 1234°5%6,
2342536, 3475%6, 122334562, 12342526, 2347526, 3425%6, 12233435462, 12232435462,
1232435%67, 12345%6, 123456, 23243546, 234526, 23450, 34526, 3456, 45%6, 456, 56, 6}),

A = 556(11, 12,2, 123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223242526, 123242576,
12342526, 1234526, 123456, 122334%5%62 12233435%62 12233435362, 23242526,
12232435462 12232435362, 2342526, 12232425362, 234526, 12232425262, 23456,
12233449506 12334455064 12233445563 122334%5%63 | 12233435%63, 12232435463,
1232435467, 1232435362, 1232475367, 123475367, 1232475267, 123425267,

12345262, 1223*47506% 1223349506% 12233445064 122334%5%6* 1232435463,
23%435%6%, 232435362, 347526, 232425367, 345%6, 232425267, 3456, 237435467,
23425362, 23475767, 2345767, 3475367, 3475767, 345267, 4526, 456, 45267, 56, 6}),

A = sy56(11, 12,2, 123,23, 3, 1234, 234, 34, 4, 12232425, 1232475, 123475, 12345, 232475, 2345,
2345,3%475,34%5,345, 45, 5, 1223447536, 1223444536, 1223347536, 123344536, 2334%5%,
1223444526, 122334%5%6, 12334%5%6, 2344526, 12233435%6, 1223243526, 122339455462,
12335405462 1223242526, 122324256, 123343526, 23%43526, 12237495%62 123243526,
123742526, 12324756, 12%34465%67, 12234495%67, 12234495367, 23243526, 32435%6,
1223*4%5362 23242526, 32425%6, 2324256, 324256, 12233445362 1233445362, 12342526,
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1234256, 123456, 233445362, 2342526, 234256, 23456, 342526, 34256, 3456, 456, 56, 6}),

A% = sy56({1, 12,2, 123,23, 3, 1234, 234, 34, 4, 122232425, 12232425, 1232475, 123425, 12345, 232475,
23425, 2345, 3425, 345, 45, 5, 12233443536, 12233444536, 12233344536, 12223344536,
122334536, 12233444526, 1223334526, 12223344526, 1223344526, 12233343526,
12223343526, 1223343526, 132437495462 12223243526, 122232425%6, 1222324256,
122435405462 1223243526, 1223242526, 122324256, 122335405462 122334465%62,
122334495%62 122334455362 123243526, 23243526, 12233445362, 123242526, 232425%6,
12324256, 2324256, 122333445362 122233445362 12237445362 12342526, 1234256,

123456, 2342526, 234256, 23456, 342526, 34256, 3456, 456, 56, 6)),

AP = s456({1, 12,2, 123,23, 3, 1234, 234, 34, 4, 12232425, 1232425, 123425, 12345, 2232425, 232475,
23425,2345,34%5, 345, 45, 5, 1233447536, 1233444536, 1233344536, 1223344536, 223344536,
1233444526, 1233344526, 1223344526, 223344526, 1233343526, 1223343526, 223343526,
122435405462 12439465%62 1223243526, 1223242526, 122324256, 223243526, 223242526,
22324256, 12337495462, 12334495462 12334475462, 12334495362, 123243526, 23243 5%,
12334445362, 123242526, 23242526, 12324256, 2324256, 12333445362 12233445362 12342526,
1234256, 123456, 22334*5362, 2342526, 234256, 23456, 342526, 34256, 3456, 456, 56, 6}),

A% = s456(11, 12,2, 123,23, 3, 1234, 234, 34, 4, 12232425, 1232425, 123475, 12345, 232425, 23475, 2345,
3425345, 425,45, 5, 1223345536, 1223344536, 122324%536, 12324%536, 2324%536, 1223344526,
1223244526, 123%4%526, 23%24%526, 1223343526, 1223243526, 12233440562 12334405%62,
1223242526, 122324256, 123243526, 12234405462, 123242526, 12324256, 23243526, 23242526,
2324256, 12233405462 12233475%62 12233455362, 12343526, 2343526, 343526, 12233445362,
12342526, 2342526, 3425%6, 12232445362, 1232445362, 1234256, 123456, 232445762, 234256,
23456, 34256, 3456, 42526, 4256, 456, 56, 6)),

AT =1{1,12,2,123,23,3, 1234, 234, 34,4, 12345, 2345, 345, 45, 5, 1223%435%6, 1223243 5%,
1223242526, 122324256, 123243526, 123242526, 12324256, 23243526, 23242526, 2324256,
1223343562, 12233445362, 12342526, 2342520, 3475%6, 12233435367, 12345%6, 2345%6, 345%6,
122334455463, 12334455463, 12234475463, 12233445262, 12233435262, 12232435362,
1232435362, 1234256, 123456, 12233475%63 122334%5%63, 232435362 4526, 12232475262,
234256, 1232435767, 34756, 12233445363, 1223242576, 1232425267, 123425262, 12346,
232435262, 23456, 232475767, 23475267, 2346, 3456, 3475767, 346, 456, 46, 56, 6},

A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 123334256, 122334256, 122324256,
12232456, 1223246, 22334256, 22324256, 2232456, 223246, 12334445262, 12334435262,
1233443562 12324256, 2324256, 12333435262, 1233343562, 1234256, 234256, 122437445263,
12435445263 1233442562, 1233342562, 12233435262, 1232456, 123456, 1223343562, 123246,
12346, 12337445263 12334445263 2233435262 223343562, 34256, 1223342562, 232456,
23246, 12334435263 1233443562, 1223242562, 123242562, 1236, 223342567, 23456, 3456,
223242567, 23242567, 2346, 236, 456, 346, 36, 46, 6},

A =(1,12,2,123,23,3,1234,234, 34, 4, 12345, 2345, 345, 45, 5, 1223334256, 1222334256,
1222324256, 122232456, 12223246, 122334256, 122324256, 12232456, 1223246, 122334445262
122334435262 12233443562, 12324256, 2324256, 122333435262 12233343562 1234256,
234256, 132435445263 122439445263 12233442562 12233342562, 122233435262,
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12223343562, 12233435262, 1232456, 123456, 122337445263, 122334445267, 1223343562,
34256, 232456, 23456, 122334435263, 12223342562, 1223342562, 3456, 12223242562, 1223242562,
456, 12233443563, 123242562, 123246, 12346, 1236, 23242562, 23246, 2346, 236, 346, 36, 46, 6},
2510 = {1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 122334256, 122324256, 12232456,
1223246, 12334256, 2334256, 12324256, 1232456, 123246, 1223%4%526% | 1234256, 12234435262,
1223443562, 2324256, 324256, 122335445267, 12233435262, 1233435262, 123456, 1223%4256,
232456, 32456, 1233744526, 12237445263, 1223343562, 1223342562, 23246, 233435262, 234256,
23456, 1223*4%5263 123343562, 23343562, 34256, 12234435267, 1223242562, 123342562, 23342562,
3456, 1223443563, 123242562, 12346, 1236, 3246, 23242567, 2346, 236, 3242567, 456, 346, 36, 46, 6},

AN = (1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223343526, 1223243526, 1223242526,
122324256, 123243526, 123242526, 12324256, 23243526, 23242526, 2324256, 12233475462,
12233435362, 12343526, 2343526, 343526, 12233445362, 12342526, 2342526, 3425%6,
122334405463 12234465463 1223%495%63 12233445262 12233435262 12232445362, 1232445362,
1234256, 123456, 12233405%63 12233455%3 232445362 42526, 122324%5262, 1232445262,
12232435262, 234256, 12233475363, 1232435262, 123435262, 12346, 23456, 232445262, 232435262,
23435262, 2346, 34256, 4256, 3435262, 3456, 346, 456, 46, 6},

2512 = (1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223343526, 1223243526, 1223242526,
122324256, 123343526, 23343526, 123243526, 123242526, 12324256, 12234475462, 12234475362,
23243526, 3243526, 12342526, 1234256, 122337405463 12234445362, 12233445362, 1233445362,
123456, 1223%4%5262 12233445262 1233445262 12346, 12337495%63 12239405%63,

12233435262 23242526, 2324256, 12234405467 12232435262, 2342526, 234256, 12234475467,
12234475363 1233435262, 1232435262, 233445362, 3242526, 342526, 23456, 233445262,
233435262 232435262 2346, 324256, 34256, 32435262, 3456, 346, 456, 46, 6},

93 =(1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 127334756, 127374356, 127374756,
12232426, 123%4%56, 12324256, 1237476, 2324356, 2324256, 23%4%6, 1223347526 1223347562,
1234356, 234356, 34356, 12233445262, 122334%562 122334405263, 12334495263 12234405263,
1223343567, 1234756, 12232445267, 1232445262, 123456, 123476, 1223244562, 123244562, 12346,
12233495263 1223243562, 234256, 23426, 12233475267, 1223347567, 123243562, 12347562, 232445262,
23456, 23244562, 34256, 4756, 23243562, 2343567, 2346, 3426, 4%6, 343567, 3456, 346, 456, 46, 6},

A = (1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 12233343526, 12223343576,
12223%435%6, 12273742526, 1222324756, 1223343520, 12232435%6, 1223242526, 12737456,
12233%435%6%, 122334495362, 123743526, 23243526, 122334475367, 123247526, 23242576,
122333445362 12342526, 2342526, 132439495463 122439405%63 | 122334445262 122333445262,
122333435262 120233445362, 12233445362 122339405%63 122334405463 122334475463,
342526, 12324256, 122233445262, 122233435262 2324256, 12233445262, 12233475267,
122334495363 1234256, 234256, 34256, 122232435262, 12232435262 1232435262, 123456,

12346, 232435262, 23456, 2346, 3456, 346, 456, 46, 6},

A5 = (1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 122334356, 122324356, 122324256,
12232426, 12334356, 2334356, 12324356, 12324756, 123%4%6, 1223447526, 1223449562, 2324356,
324356, 1234256, 123426, 12233%455263, 12234445262, 12233445262, 1233 4%5%6%, 123456,
1223444562, 1223344562, 123344562, 12346, 12339495263 12239495263 1223343562,
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2324256, 23%4%6, 12234405263, 1223243562, 234256, 234%6, 12234475263, 1223447567,
123343562, 123243562, 233445262, 23456, 2334%562, 324256, 34256, 23743562, 23243562,
2346, 32426, 3426, 3243562, 3456, 346, 456, 46, 6},

A0 = (1,122,123, 23,3, 1234,234, 34, 4, 12345, 2345, 345, 45, 5, 1233343526, 1223343526, 1223243526,
1223242526, 122324256, 223343526, 223243526, 223242526, 22324256, 12334475462, 12334475362,
123243526, 23243526, 12334445367, 123242526, 23%475%6, 1233345362, 12342526, 2342 5%,
122435405463 12437465463 12334445262 12333445262, 12333435262 12233445362, 12324256,
1234256, 123456, 12337405463 1223%495%63 1233%455%63 2233445362 342526, 12233445262,
12233435262, 2324256, 1233445363, 12232435267, 1237435762, 12346, 2233445262, 2233435262,
234256, 34256, 2232435262, 232435262, 23456, 2346, 3456, 346, 456, 46, 6},

AT = {1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223334356, 1222334356, 1222324356,
1222324256, 122232426, 122334356, 122324356, 122324256, 1273%4%6,12233%435262 12233443562,
12324356, 2324356, 12233%4%5262, 122333445267, 1223344562, 12324256, 2324756, 132%39455%6°,
122435405263 12233344562, 12233343562, 1232426, 23%4%6, 122337495263 122233445262,
12223344562, 12023343562, 12233445262, 1223344562, 1223343562, 122334405263 122334455263,
1234256, 234256, 34256, 1223344356, 123426, 23476, 34%6, 12223243562, 1223243567, 123243567,
123456, 12346, 23243562, 23456, 2346, 3456, 346, 456, 46, 6},

A8 =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223334256, 1222334256, 1222324256,
122232456, 12223246, 123334256, 122334256, 122437445262, 122439435262, 12243743562,
122324256, 122434435262 12243%43562, 22324256, 12324256, 12233%435262 22334256,
12233443562, 2324256, 132530445263 12334435262, 12232456, 1232456, 123456, 122730445263
122430444263, 122437445263 1233443562, 12243442562, 2232456, 12233442567, 12233342562,
1223246, 122435434263, 1233442562, 232456, 12223342567, 123246, 12243743567, 1233342562,
1223342567, 12346, 1236, 223246, 23246, 223347567, 23456, 2346, 236, 3456, 346, 36, 6},

2519 =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 123334356, 122334356, 122324356,
122324256, 12232426, 22334356, 22324356, 22324256, 2232426, 12334475262, 1273447562,
12324356, 2324356, 12334445262, 12333445262, 1233444562, 12324256, 2324256,

122433465263, 12435465263, 123334562, 1233343562, 1232426, 23%4%6, 12335465263,
12233445262 1223344562, 1223343562, 2233445262, 223344562, 223343562, 12334405263,
12334455263, 1234256, 234756, 34256, 123344556, 1234%6, 23426, 3476, 1223243567, 123243567,
123456, 12346, 223343562, 23243562, 23456, 2346, 3456, 346, 456, 46, 6},

A0 ={1,12,2, 123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223334256, 1222334256, 1222324256,
122232456, 12223246, 122334256, 122324256, 12232456, 1223246, 122337445262, 122337435262,
12233343562, 12334256, 2334256, 12233%435262 12233443562, 12324256, 2324256, 132430445263,
120430444263 12233442562, 12233342562, 122234435262, 12223443562, 12234435262, 1232456,
123456, 122330445263 122339445263 1223443562, 324256, 232456, 23456, 12233743526,
12223442562, 1223442562, 32456, 12223342562, 1223342562, 3456, 12233543567, 123342562,
123246, 12346, 1236, 23742562, 23246, 2346, 236, 3246, 346, 36, 6},

APV =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 123334256, 122334256, 122324256,
12232456, 1223246, 22334256, 22324256, 2232456, 223246, 12337445262, 12339435262,

1233543562, 12334256, 2334256, 12334435262, 1233443562, 12324256, 2324256, 122#304%4263,
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12430445263 1233442562, 1233342562, 12234435262, 1232456, 123456, 1223443562, 123246,
12346, 12330445263, 12339445263 2234435262, 223443562, 324256, 122342567,
1223342562, 12337435267, 1233943563, 123342562, 1236, 232456, 223442567, 32456, 23456,
223342562, 3456, 23342562, 23246, 2346, 236, 3246, 346, 36, 6).

8.11.2 Weyl groupoid
The isotropy group at a; € X is

Wiap) = (51", 65" 65 . 64" se' . 65 G6545653525453655364525356545655) =~ W (Bs).

8.11.3 Incarnation

We set the matrices (q(i))ie]Iz], from left to right and from up to down:

T ¢

o
Il
o

3

il
ovy
~

[ S L S A G
(o] (o]

o~
ovy
o~
|
_
~
|

|
_
~
o~
~
o
~
|
_
~
o
~
o~
o
-
o
kadl

ovy
kall
owvy
mf
ovs
|
|
=
~
o~
ovy|
|
kall
o~
bl
|
=
u\f
o~
|
bl
oy

g z

(0] [e]

T T
¢ ¢ ¢ ¢ =1 ¢ -1 ¢ -1 ¢ ¢ =1 ¢ =1 ¢ ¢ ¢ -1
[e] [e] [e] [e] [e] [e] [e] [e] [e] [e]
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¢ ¢
() o)
13 3
¢ ¢t ¢ ¢ -1 ¢ ¢ ¢ -1 =1 ¢ -1 ¢ ¢ ¢ ¢t ¢ -l
0] (o) (o] (o] [e] (] o o [e] [e]
¢ ¢
(e} (e}
B B
¢ ¢ -1 ¢ =1 ¢ -1 ¢ -l -1 ¢ ¢ ¢t ¢ ¢ ¢t -l
0] (o] [e] o (o] (o] (o] [e] 0] o
¢ ¢
[ (o)
B 3
-1 ¢ -1 ¢ ¢ ¢ -1 ¢ -l ¢ -1 7 ¢t ¢ T ¢
[e] (e} [e] o] ] o o (o] o o]
¢ ¢
[e] [e]
3 3
-1 ¢ ¢ ¢t ¢ ¢ -1 ¢ -l -1 ¢ ¢ ¢ -1 7 ¢ T ¢
[e] (o] (o] (0] (o] [e) e} [e) [e] (e}
¢
[e]
3
-1 ¢ -1 ¢ -1 ¢ ¢ ¢ ¢
(o] (o) [e] (o] (o]
Now, this is the incarnation:
ai v s56(q'), i €y ai > sase(q), i €Tae; @i > qP, i €Tz

8.11.4 PBW-basis and dimension

Notice that the roots in each Ai", i €Iy, are ordered from left to right, justifying the

notation S, ..., Bes.
The root vectors xg, are described as in Remark 2.14. Thus

n
xggs...xggxﬁ: |0 < ny < N,gk}.

is a PBW-basis of By. Hence dim B, = 232336
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8.11.5 The Dynkin diagram (8.92 a)

The Nichols algebra By is generated by (x;);e1, With defining relations

x112 = 05 101 =0; x03=0; x;=0,i<j,q;=1
[x5543, X54]c = 0;  x330 =0; 334 =0; [[x@e6), x5]c, x5]c =05 (8.93)
X443 = 0; X445 = 0;  x556 = 0; xé =0; xs =0, xe (’)1

Here o] = {1.12,2,123,23,3,1234,234, 34, 4, 12345, 122324252, 12324252, 1234252, 123457, 2345, 2324757,
234252 23452345, 342523452 45,4525, 122334455062 122334455062, 12234455062, 12233455062, 12233445062,
12233445562, 12233445462, 12233435462, 12232435462, 1232435462, 232435462} and the degree of the inte-
gral is

a = 56a1 + 108y + 1563 4+ 200a4 + 24005 + 76006

8.11.6 The Dynkin diagram (8.92 b)
The Nichols algebra By is generated by (x;);e1, with defining relations

x112=0; x21=0; xp45=0; x;=0,7<},q;j =1
. —0N- 2 _ 0 —0N-
x03=0; x332=0; x5 =0; [[x65, X654c, X5]c = 0; (8.94)
— - — 0 2 _n. 3 _ q
x334 = 0;  x443 = 0; x5 =0, x;=0, ae0].
Here 0 = (1,12,2,123,23,3,1234, 234, 34, 4, 123456, 12233445462, 12233435462, 12232435462, 12232425267,
23456, 122334495064, 12334455064 12233445563 1232435462 1232425262, 123425262, 12345262, 12234455064,

12233455664, 12233445664 232435462, 232425262 3456, 23425262, 2345262, 3425262, 345262, 456, 45262, 56} and
the degree of the integral is

a=56a1 + 108ay + 1563 + 2004 + 240a5 + 1660.
8.11.7 The Dynkin diagram (8.92 c)
The Nichols algebra By is generated by (x;);e1, with defining relations
X112 = 0; X554 = 0; x%:O; xij=0,i<j,qj=1;

. . 2 _ 0 —_ 0
[xa3).x2]e =0; xs56 =0; x5 =0; [[x34,x35)]c, x4]c = 0; (8.95)
. . 2 . 3 q
[x@4),x3]c =0; X665 =0; x5 =0; x; =0, a€O].
Here 0 = (1,123,23, 34, 12232425, 123425, 2345, 32425, 345, 5, 1223444536, 123344536, 23344536,1223%4%526,
123344526, 23344526, 1223343526, 122335465462 12335405462, 1223242526, 122324256, 123243526, 12234405462,

23243526, 12234445362, 3242526, 324256, 1233445362, 12342526, 1234256, 233445362, 2342526, 234256, 3456, 56, 6}
and the degree of the integral is

A= 5601 + 108y + 2063 + 252a4 + 172a5 + 88wg.
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8.11.8 The Dynkin diagram (8.92 d)

The Nichols algebra By is generated by (x;);e1, With defining relations

x332=0;  x334=0; xij=0,i<j,q;=1
xss6 =0;  xe65 = 0; [[[x@s), xalc, x3]c, x4]c = O;
5 (8.96)
xi =0; [xaz,x2le = 0;  [[[x6s543, Xalc, x5lc, x41c = 0;
X554 = 0; x%:O; xf:O; xi:O, ae(’)j’r.
Here 0§ = {12,123,3,234,123%4%5,123425,2232425,2345, 3425, 5, 1233444536, 1233344536, 22334536,
1233444526, 1233344526, 223344526, 1223343526, 122435405462, 1223243526, 223242526, 22324256, 12335405462,
123344065462 23243526, 12334445362, 123242526, 12324256, 12333445362, 12342526, 1234256, 2233445362,
23456, 342526, 34256, 56, 6) and the degree of the integral is
a =561 + 156, + 206a3 + 25204 + 17205 + 880.
8.11.9 The Dynkin diagram (8.92 e)
The Nichols algebra By is generated by (x;);c1, With defining relations
x023=0; x332=0; x;=0,i<j,g;=1
x334 = 0;  xss54 =05 [[[x5), Xale, x3]c, xa]c = 05
(8.97)

xs56 = 0;  xee5 = 05 [[[x6543, X4lc, x51c, X4]e = 0;

x201 = 0; x12=0; xf:O; xi:O,ani.
Here 0} = (2.23,3, 1234, 122232425, 12345, 237425, 23425, 3425, 5, 12233444536, 12233344536, 1222334453,
12233444526, 12233344526, 12223344526, 1223343526, 12223242526, 1222324256, 122435405462, 1223243526,
122335465462, 122334465462, 123243526, 122334445362, 23242526, 2324256, 122333445362, 122233445362, 123456,
2342526, 234256, 342526, 34256, 56, 6} and the degree of the integral is

a=102a; + 156ap + 20603 + 25204 + 172a5 + 88a.

8.11.10 The Dynkin diagram (8.92 f)

The Nichols algebra By is generated by (x;);e1, with defining relations

x112 = 05 x221 = 0; xij=0, i <], aijzl;
x223 = 0; x443 = 0;  [[x@35), x4]c, xa]c = O;

(8.98)
xs554 = 0; xs556 = 0 [x4456, x45]c = 0;

xe6s = 0;  [xay, %3 =0; x3=0; x2=0, ae o4,

Here 0f = {1.12,2,4, 12232425, 1232425,23%425, 425,45, 5, 1223244536, 123244536, 2324*536, 1223244526,
123244526, 23244526, 1223243526, 122334405462, 12334465462 1223242526, 122324256, 123243526, 12234405462,
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123242526, 12324256, 23243526, 23242526, 2324256, 12232445362, 1232445362, 232445362, 42526, 4256, 456, 56, 6}
and the degree of the integral is

A= 56a1 + 108y + 1563 + 252a4 + 1725 + 88wg.

8.11.11 The Dynkin diagram (8.92 g)

The Nichols algebra By is generated by (x;);c1, With defining relations

x12=0; x21=0; x03=0; x;=0,i<j,q;=1
xss4a =0; x330=0; x334 =0; [x346, X4]c = O0; (8.99)
xss6=0; xf=0; x2=0; x)=0, « €0l ’

[x3s), Xale = 0;  x(a6) = q56¢ [Xa6, X51c + gas (1 — £)x5x46.

Here 0f = {1.12,2,123,23,3,5, 1223343526, 1223243526, 123243526, 23743526, 12233445462, 12233445362,
1234526, 234526, 34526, 122334455463 12334455463, 12234455463, 12234445262, 123456, 12233455463,
4526, 12232425262 1232425262, 123425262, 12346, 23456, 232425262, 23425262, 2346, 3456, 3425262, 346, 456, 46}
and the degree of the integral is

a =561 + 108as + 156a3 4+ 200c4 + 166a5 + 12806.

8.11.12 The Dynkin diagram (8.92 h)

The Nichols algebra By is generated by (x;);e1, With defining relations

x21 =0; x203 =0; [xs46,x4]lc =0; x;5=0,i<j,qj=1

Xssa=0;  x7=0; [x@4.x3]e =0; [x236, x3]c = 0;

(8.100)
x3=0; x;=0; [xgs.x4le=0; x;=0 aecO%
2 . -
x5 =0;  x346 = qa6¢ [x36, Xale + q34(1 — {)x4x36.
Here 0] = (2,123,234, 34,2345, 345, 5, 1223334256, 1222334256, 122232456, 12223246, 122324256,

122334445262 12324256, 122333435262, 12233343562, 234256, 122435445263, 12233442562, 122233435262,
12223343562, 123456, 122339445263, 34256, 232456, 122334435263, 1223342562, 12223242562, 456, 12233443563,
12346, 23242562, 23246, 236, 36, 46} and the degree of the integral is

g = 1020 + 1563 4+ 20603 + 17204 + 885 + 128c6.
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8.11.13 The Dynkin diagram (8.92 i)

The Nichols algebra By is generated by (x;);e1, With defining relations

. 2 . . : s~ .
x554 =0; x7=0; [xu3).x2]le=0; x;=0,i<j,gj=1
2 . 2 . . —_0-
x5 =0; x3=0; [x@4),x3]c =0; [x236,x3]c =0; (8.101)
2 . 2 . . 3 . ’
x;=0; x5=0; [xas),xale=0; x)=0, a€O;
[x546, Xale = 05 x346 = qa6¢ [x36, Xalc + q34(1 — £)x4x36.
Here 0f = {12,23,1234,34, 12345, 345, 5, 123334256, 122324256, 22334256, 2232456, 223246, 12334445262,
2324256, 12333435262, 1233343562, 1234256, 122435445263 1233442562, 1232456, 123246, 12335445263,
2233435262, 223343567, 34256, 1223342562, 12334435263, 1233443563, 123242562, 1236, 23456, 223242567,
2346, 456, 36, 46} and the degree of the integral is

= 5601 + 156a, + 2063 + 17204 + 88as + 128.
8.11.14 The Dynkin diagram (8.92 j)

The Nichols algebra By is generated by (x;);e1, With defining relations

x112 =0;  x332 =0; x334 = 05 xij=0,1<j,qij=1,
. 2 . —_0- —0N-

x336 =0; x5 =0; [xa3),x2]c =0; [x@3s5),x4]c =0; (8.102)
. 2 . . 3 q. ’

xssa =05 xy=0; [xsa6.x4le =0; x; =0, « € OF;

2 . 7

x5 =05 x346 = qa6¢[x36, X4l + q34(1 — §)x4x36.
Here 01 = (1,3,1234,234, 12345, 2345, 5, 12232456, 1223246, 12334756, 2334256, 12324256, 12234445262,
1234256, 2324256, 122335445263, 1233435262, 1223442562, 32456, 12339445263, 1223342562, 233435262, 234256,
123343562, 23343562, 12234435263, 1223242562, 3456, 1223443563, 1236,3246, 236, 3242562, 456, 346, 46} and the
degree of the integral is

a = 5601 + 108wy + 2063 + 172a4 + 885 + 1280.
8.11.15 The Dynkin diagram (8.92 k)
The Nichols algebra By is generated by (x;);c1, With defining relations

xi2=0; x21=0; [x346,04]c =0; x;;=0,i<j,qij=1
x223 =0;  xeea =05 [x24),x3]c =0;  [[x54, X546]c, Xale = 05 (8.103)

xf =0; x32 =0; [x35),x4]c = 0; xs2 =0; xg =0, a e (’)i.

Here 09 = (1,12,2,1234,234, 34,45, 1223343526, 1223242526, 123242526, 23242526, 12233475462, 12343526,
2343526,343526, 12233445362 122334405463 12334405463 12234405463 12233435262, 1234256, 1223345563,
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42526, 12232445262 1232445262, 234256, 123435262, 12346, 232445262, 23435262, 2346, 34256, 3435262, 346,
456,6) and the degree of the integral is

= 56a1 + 108ay + 15603 + 25204 + 1665 + 128a.
8.11.16 The Dynkin diagram (8.92 1)
The Nichols algebra By is generated by (x;);e1, With defining relations

X112 =0; x443 =0; [xa3),x2]le =0; x;=0,i<j,qij=1
X445 = 05 x446 = 0; X664 = 0; [x24), x3]c = 0; (8.104)
x22=0; x32=0; x52=0; xé:O,ani.
Here 0 = (1.123,23,1234, 234, 4,345, 1223243526, 1223242526, 123343526, 23343526, 12324256, 12234475462,
3243526,12342526, 122335465463, 12233445362, 12234445262, 1237445262, 12346, 12333405463, 2324256,
12234405463 12232435262, 2342526, 12234495463, 1233435262, 3242526,  2334*5262, 233435262, 2346, 34256,
32435262, 3456, 46, 6} and the degree of the integral is
a = 56a1 + 108y + 20603 + 2524 + 1665 + 1280.

8.11.17 The Dynkin diagram (8.92 m)

The Nichols algebra By is generated by (x;);e1, With defining relations

x4y, 3] =0; x221=0; x23=0; x;;=0,i<j,qj;=1
x443 = 0;  x112 =0;  [[x346, X4]c, x4]c = 0;

8.105
x445 =05 xe64 = 0;  [[x546, X4]c, x4]c = 05 ( )

2 _§. 2§ 3 _ q
x5 =0; x5=0; x,=0, 2ae0].
Here 0] = (1,12,2,4,12345,2345, 345, 122334356, 12232426, 1232426, 23%4%6, 1223%43562, 1234356, 234356,
34356, 1223344562, 122334405263, 12334465263, 12234405263 1223343562, 1234256, 12232445262, 1232445262,
123456, 234256, 1223345563, 12343562, 232445262, 23456, 34256, 2343562, 426, 343562, 3456, 46,6) and the
degree of the integral is
= 56a1 + 108y + 1563 + 2524 + 88as + 128g.

8.11.18 The Dynkin diagram (8.92 n)

The Nichols algebra By is generated by (x;);e1, With defining relations

=0 x3a=0 xf=0; x;=0i<jg;=1
xa3=0; xas=0; x3=0; [x13). 12l =0 (8.106)

xq46 = 0;  xg64 = 0; x%:; x;:O,QGOi.
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Here 0 = (12,123,3,1234, 34, 4, 2345, 1233343526, 122324256, 223343526, 223243526, 223242526,123344754 62
123243526, 123242526, 12342526, 122435405463 12334445262 12333445262, 12333435262, 12233445362,
12335465463 12334405463 12334455463 342526, 2324256, 1232435262, 12346, 2233445262, 2233435262 234256,
2232435262, 23456, 346, 46, 6} and the degree of the integral is

a = 56a1 + 1560 + 20603 + 2524 + 1665 + 128a.

8.11.19 The Dynkin diagram (8.92 7i)

The Nichols algebra By is generated by (x;);e1, With defining relations

x112 =05 xazyx2le =0; x3=0; x;=0,i<j,qj=1;
X664 = 0; [x@ay:x30e = 0; x5 =0;  [[x34, X346)c, Xale = O; (8.107)

[xsa6.x4le = 0:  [x@s).xale =0; x3=0; x3=0;x; =0, €0l

Here 07 = {1,123,23,34, 12345, 2345, 45, 12334356, 12324256, 2334356, 324356, 32426, 1223%47562, 122324356,
12234445262 1234445262, 2324256, 122335405263 123343562, 12232426, 12339405263 1223344562 233445262,
23343562, 12234405263, 34256, 1223445563, 123426, 23426, 1223243562, 123456, 3243562, 346, 23456, 456, 6} and
the degree of the integral is

= 5601 + 108y + 20603 + 2524 + 88as + 128g.

8.11.20 The Dynkin diagram (8.92 o)

The Nichols algebra By is generated by (x;);c1, With defining relations

121 =0; x03=0; x332=0; x;=0,i<j,q;=1
X334 =0; x443 =0;  xg45 = 0;  x446 = 0; (8.108)

x664 = 0; x12=0; x52=0; xi:O,ae(’)f‘r.

Here 0§ = (2.23,3,234,34,4,12345, 12233343526, 12223343526, 12223243526, 12223242526, 122324256,
122334455462, 23243526, 23242526, 2342526, 122435465463, 122334445262 122333445262, 122333435262,
12233445362, 122335465463 122334405463 122334455463, 342526, 12324256, 122233445262, 122233435262,
1234256, 122232435262, 123456, 232435262, 2346, 346, 46, 6} and the degree of the integral is
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A= 102a; + 1560 4 20603 + 25204 4 16605 + 128a6.
8.11.21 The Dynkin diagram (8.92 p)

The Nichols algebra By is generated by (x;);e1, with defining relations

. —_ 0 2 _ 0 _ : T A T
x332=0; [xaz,x2le=0; xy=0; x; =0,i</j,qj=1;
. . 2 . .
xe64 = 0;  [x@35),x4lc = 0;  x3 =0;  [x564, x4]c = 0; (8.109)
— - 2 _n. 2 _n. 3 _ q
x334 = 0; x; =0; x5=0; x,=0, ae0].
Here 09 = {12,123,3,234,12345, 345, 45, 123334356, 122324256, 22334356, 22324356, 223%4%6, 1233447567,
12324356, 12334445262, 12333445262, 2324256, 122439495263, 1233343562, 1232426, 12335495263, 1223344562,
2233445262 223343562, 12334465263, 234256, 1233445563, 123426, 3426, 123243562, 123456,223243562, 2346, 3456,
456,6) and the degree of the integral is

= 56a1 + 1560 + 20603 + 2524 + 88as + 128wg.
8.11.22 The Dynkin diagram (8.92 q)

The Nichols algebra By is generated by (x;);c1, With defining relations

X112 =0; x332=0; x334=0;, x;=0,i<],qj;=1

x336 =0; x443 =07 x445 =0;  [x3), x2]c =0; (8.110)

x554 = 0;  xe63 = 0; x% =0; x;z =0, ae Oi.
Here 0§ = {1.3,34,4,345,45,5, 122233456, 1222324256, 122232456, 12223246, 122334256, 122439445262,
122435435262, 12243543562, 22334256, 122324256, 122434435262, 12243443562, 22324256, 12232456,
122430445263 122435445263 12243442562, 2232456, 1223246, 122439435263 12223342562 12243543563,
1223342562, 223246, 223342562, 3456, 346, 36, 6} and the degree of the integral is

A= 102a; + 280ay + 2523 + 17204 + 88as + 128.

8.11.23 The Dynkin diagram (8.92 r)

The Nichols algebra By is generated by (x;);e1, With defining relations

x21=0;  x3334=0; x32=0; x;=0,i<j gj=1
x223 =05 [x35),x4]c = 0; X2 =0; [[[x2346, Xale» X3, xale = 0;  (8.111)

X664 = 0;  [xs46,x4le =0;  x3=0; x3=0; x2=0, e o1,

Here of = (2,23,3,1234,2345, 345,45, 1223334356, 1222334356, 1222324356, 122232426, 122324256,
12233445562 2324356, 122334445262,122333445262 12324256, 122435405263 12233343562, 232426, 122335405263
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122233445262,12223343562, 1223344562, 122334465263, 1234256, 12233443563, 234%6,34%6, 12223243562,
12346, 23243562, 23456, 3456, 456, 6} and the degree of the integral is

A= 102a; + 156a + 20603 + 25204 + 88as + 128a.

8.11.24 The Dynkin diagram (8.92 s)
The Nichols algebra By is generated by (x;);c1, With defining relations
x01 =0; x23=0; [xp4),x3le=0; x;;=0,i<j,qj=1

X443 = 0;  x445 = 0;  [x236,x3]c = 0;  [[[x5436, x3]c, Xalc, x3]c =05 (8.112)

X554=0; x663=0; x12=0; x32=0; xi:O, 056(93_.

Here o = (2.123,1234,4,12345,45,5, 123334256, 122334256, 22324256, 2232456, 223246, 12333445262,
12335435262, 1233543562, 12334256, 2324256, 122430445263 1233342562, 123456, 12346, 12335445263,
2234435262 223443562, 324256, 1223342562, 12335435263, 1233943563, 123342562, 1236, 232456, 223442562,
32456, 23246, 3246, 6) and the degree of the integral is

= 56a1 + 1560 + 25203 + 172a4 + 88as + 128g.

8.11.25 The Dynkin diagram (8.92 t)

The Nichols algebra By is generated by (x;);e1, With defining relations

x443 =05 xaas =07 [x3),x2le =05 x;; =0, i < j, qij =1;
x554 =0;  x663 =0;  [x24),x3]c =05  [[[x5436, x3]¢, X4le, x3]c =05 (8.113)
xlz =0; x% =0; [x236,x3]c =0; x32 =0; x; =0, e Oi.

Here 0f = (12, 23,234, 4,2345,45, 5, 1223334256, 1222324256, 122232456, 12223246, 122334256, 122337445267,
122335435262, 12233543562, 2334256, 12324256, 122430445263, 12233342562, 122234435262 12223443562,
1232456, 122335445263 324256, 23456, 122335435263, 12223442562, 32456, 1223342562, 12233543563, 123246,
23342562, 2346, 236, 3246, 6) and the degree of the integral is

=102« + 156ap + 25203 + 17204 + 88as + 128c.

8.11.26 The associated Lie algebra

This is of type Bg.
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8.12 Type g(8, 6)

Here 0 =7, ¢ € G}. Let

2-10 0 0 00
12 -10 0 00
01 0-1000
0 0-10 1 01|eFf p=(,1,-1,-1,1,1,1) € Gj.
00 0—-12-10
000 0-120
00 01002

Let g(8,6) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
We know [29] that sdim g(8, 6) = 133|56. There are 7 other pairs of matrices and
parity vectors for which the associated contragredient Lie superalgebra is isomorphic
to g(8, 6). We describe now the root system g(8, 6) of g(8, 6), see [3] for details.

8.12.1 Basic datum and root system

Below, A7, D7, E7 and 377 are numbered as in (4.2), (4.23), (4.28) and (3.11),
respectively. The basic datum and the bundle of Cartan matrices are described by
the following diagram:

Eq 3 E7 2 E7 1 E7
] [ ] L] [ ]

ai ap as as
4
s567(A7) 7 3T 5 Dy 6 D7
° ° ° °
as ae ar ag

Using the notation (3.1), the bundle of root sets is the following:

aj
Ay

@
Ay

={1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345,45, 5, 122324256, 12324256,

1234256, 123456, 12346, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 4256, 456, 46, 6,
122334353637, 122334952637, 122334452637, 122324452637, 12324452677, 2324%52677,
122334452627, 122324452627, 12324452627, 2324452627, 122334352627, 122324352627,
12324357677, 2324352627, 1234357677, 234357677, 34352627, 1223344553 6472 123344653672,
1223445536472 1223345536472, 1223343536472, 1223349536372, 12233435677,

12232435627, 12232475627, 1223247567, 1232435627, 1232425677, 123242567, 123435677,
123425677, 12347567, 1234567, 1223347526472 1223343526372, 1223344526372, 122324526372,
123244526372, 123467, 232435627, 2347 56°7, 3435627, 237475677, 23425677, 3425677, 425677,
23244526372 23242567, 2342567, 234567, 23467, 342567, 34567, 3467, 42567, 4567, 467, 67, 7},
= {1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345,45, 5, 122324256, 12374756,

1234256, 123456, 12346, 23%4%56, 234756, 23456, 2346, 324756, 34756, 3456, 346, 456, 46, 6,
122344353637, 1223%4952637, 122344452637, 122334452637, 1233445267, 2334452637,
12234452627, 122334452627, 123%4%5%6%7, 2334452627, 127334752627, 12334357677,
2334352627, 122324352627, 12324352627, 2324352627, 324352627, 1223374953672,
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1233340536472 1223949536472, 1223446536472, 1223447536472, 1223447536372,
12233435627, 12232435627, 12232425627, 1223242567, 1233435627, 1232435627, 1232425627,
123242567, 123425627, 12342567, 1234567, 1223447526472, 1223447526372, 1223444526372,
1223344526372 123344526372, 123467, 237435627, 232435627, 32435627, 232425627,
32425627, 23425627, 3425627, 23344526372, 23242567, 2347567, 234567, 23467, 3242567,
342567, 34567, 3467, 4567, 467, 67,7},

A9 =1(1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 122324256, 12324256,
1234256, 123456, 12346, 22324256, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 456,
46,6, 123344753637, 123344752637, 123344452637, 123334452637, 122334452637,
22334452637, 123344452627, 123334452627, 122334452627, 22334452627, 123334352627,
122334352627, 22334352627, 122324352627, 22324352627, 12324352627, 2324352627,
12243540536%72 1243949536472 1233940536472 1233440536472 1233445536472,
1233443536372, 12333435627, 12233435627, 12232435627, 12232425627, 1223242567,
1232435627, 1232425627, 123242567, 123425627, 12342567, 1234567, 1233449526472,
1233445526372 123344526372 1233344526772, 1223344526372, 123467, 2233435627,
2232435627, 232435627, 2232425627, 232425627, 23425677, 3425627, 223344526372,
223242567, 23747567, 2347567, 234567, 23467, 342567, 34567, 3467, 4567, 467, 67, 7},

A% =1(1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1222324236, 122324756,
12324256, 1234256, 123456, 12346, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 456,
46,6, 1223344353637, 1223344552637, 1223344452637, 1223334452637, 1202334452637,
122334452637, 1223344452627, 1223334452627, 1222334452627, 122334452627,
1223334352627, 1222334352627, 122334352677, 1222324357677, 122324352677,
12324352627, 2324352627, 1324394053672 122439405364 72 12233540536472,
12233%40536%72 12233%45536%72 12233%45536372 122333435627, 122233435627,
122232435627, 122232425627, 12223242567, 12233435627, 12232435627, 12232425627,
1223242567, 1223344552672 12233%45526372 1232435627, 232435627,

12233%4%526372 1232425627, 232425627, 123242567, 23242567, 1223344526372,
12223344526372 1223344526372, 123425627, 12342567, 1234567, 123467, 23425677,
2342567, 234567, 23467, 3425627, 342567, 34567, 3467, 4567, 467, 67,7},

A9 = 556711, 12,2, 123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223242526, 123242576,
12342526, 1234526, 123456, 23242526, 234%5%6, 2345%6, 23456, 342526, 34526, 3456, 4526,
456,56, 6, 122334455637, 122334454637, 122334354637, 122324354637, 12324354637,
2324354637, 122334454627, 122334354627, 122324354627, 12324354627, 232435627,
122334353627, 122324353627, 12324353627, 2324353627, 1223347506472 1233447506472,
122324253627, 122324252627, 12232425267, 1223449506472 12324253627, 12324252627,
1232425267, 2324253627, 2324252627, 232425267, 1223349506472 1223344506472,
122334556472 1223344556372, 1234253627, 234253627, 34253627, 1223344546372,
1234252627, 234252627, 34252627, 123425267, 23425267, 3425267, 1223343546372,
1223243546772, 123243546372, 123452677, 12345267, 1234567, 23743576372,

23452627, 2345267, 234567, 3452677, 345267, 34567, 452627, 45267, 4567, 567, 67, 7)),
A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 122324256, 12324256, 1234756,
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123456, 12346, 2324256, 234256, 23456, 2346, 34256, 3456, 346, 456, 46, 56, 6, 122334453637,
122334452637, 122334352637, 122324352637, 12324352637, 2324352677, 122334%52627,
122334352627, 122324352627, 12324352627, 2324352627, 122324252627, 12324252627,
2324252627, 1234252627, 234252627, 34252627, 12233%45536%72 1233447536472,
1223449536772, 1223349536472, 1223344536472, 1223344536372, 12233435627, 12232435627,
12232425627, 1223242567, 1232435627, 1232425627, 123242567, 123425627, 12342567,
12345627, 1234567, 1223344526472, 1223344526772 1223343526372 1223243526372,
123243526372, 123467, 23243567, 232425627, 23425627, 342567, 2345677, 345677, 45627,
23243526372 23242567, 2342567, 234567, 23467, 342567, 34567, 3467, 4567, 467, 567, 67,7},

AT =(1,12,2,123,23,3,1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 1223242526, 123242526,
12342526, 1234526, 123456, 23242526, 2342526, 234526, 23456, 342526, 34526, 3456, 45%6, 456,
56,6, 122334455637, 122334455627, 122334454627, 122334354627, 122324354627, 12324354627,
2324354627, 122334353627, 122324353627, 12324353627, 2324353627, 122324253627,
12324253627, 2324253627, 1234253627, 234253627, 34253627, 12233%45506372 1233447506772,
1223443506372 1223345506372 1223344506372 1223344556372 12233435367, 12232435367,
12232425367, 12232425267, 1232435367, 1232425367, 1232425267, 123425767, 123425267,
12345267, 1234567, 1223344556272 1223344546272, 1223343546272, 12232435%6272,
123243546272 123457, 232435367, 232425367, 23425367, 3425367, 232425267, 23425267,
3425267, 23243546277, 2345267, 234567, 23457, 345267, 34567, 3457, 45267, 4567, 457, 567,57, 7},

A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345, 45, 5, 123456, 23456, 3456, 456, 56, 6,
12232425267, 1232425267, 123425267, 12345267, 1234567, 123457, 122334546272,
1223343546272 1223343536272 122334353672, 232425267, 1223243546272, 1223243536272,
122324353672, 23425267, 1223242536272, 122324253672, 2345267, 122324252672, 234567,
23457, 12233%455063 7% 1233445506374 1223344556373 1223344556273,

1223344546273 1223343546273, 1223243546277, 123243546272, 123247536272, 123242536272,
12342536272, 12324353672, 12324253672, 1234253672, 12324252672, 1234252672, 12345%672,
1223447506374 1223347506374 1223344506374, 1223344556374 1223344596274,
123243546273, 23243546272, 23243536272, 2324353672, 3425267, 23242536272, 2324253672,
345267, 2324252672, 34567, 3457, 23243546273, 2342536272, 234253672, 234252672, 23452672,
342536272, 34253672, 34252672, 3452672, 45267, 4567, 567, 452672, 457,57, 7).

8.12.2 Weyl groupoid

The isotropy group at ag € X is

W(as) = (51 $26364576655565764536261, S5+ 654, 6uty 65*, g6, 67%) ~ W(E7).
8.12.3 Incarnation

We set the matrices (q(i))ie]ls , from left to right and from up to down:
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Now, this is the incarnation:
55. . @
as — s567(q°); ai — q¥, i #£5.
8.12.4 PBW-basis and dimension

Notice that the roots in each Ai", i € I3, are ordered from left to right, justifying the
notation By, ..., Bor.
The root vectors xg, are described as in Remark 2.14. Thus

ng;’ll xgjxgll |0 <ng < N/gk} .
is a PBW-basis of By. Hence dim B, = 228363
8.12.5 The Dynkin diagram (8.114 a)

The Nichols algebra By is generated by (x;);e1, with defining relations

x112=0; x201=0; x03=0; x;=0,i<j,q;=1

x332=0; x334 =0; [[[x36), X5]c, Xalc, x5]c = 05 8.115)
X443 = 0;  xa45 = 0;  x776 = 0;  [[[x7654, X5]c> X6]c, X5]c = O0;
Xoos =0 xee7 =0;  x3=0; x) =0, €Ol

Here 07 = (1,12,2,1234, 234,34, 12345, 2345, 345, 5, 122324256, 12324256, 123456, 12346, 2324256, 23456, 2346,
3456, 346, 4256, 6, 122334353637, 122334352637, 122324452637, 12324452637, 2324452637, 122324452677,
12324452627, 2324452627, 122334352627, 1234352627, 234352627, 34352627, 12233446536%72 1233446536472,
1223446536472 1223345536472 1223345536372, 12233435627, 12232425627, 1223242567, 1232425627, 123242567,
123435627, 1234567, 1223347526472, 1223347526372, 1223244526372, 123244526372, 123467, 23435627, 3435627,
232425627, 425627, 23244526372, 23242567, 234567, 23467, 34567, 3467, 42567, 67,7) and the degree of the
integral is

= 80a1 + 156ay + 2283 + 360a4 + 24405 + 1246 + 18207.
8.12.6 The Dynkin diagram (8.114 b)
The Nichols algebra By is generated by (x;);er, with defining relations

x112=0; x21=0; [x35,X4le=0; x;;=0,i<j,qj=1;
x223 =0; x332=0; [x347,x4]c =0; [x@e), x5]c = 0;
. . 2 .3 q. (8116
x334 =05 xees =05 [xes7.x5lc =0; x5 =0; x;, =0, ¢ € OF;
2 . 2 _ 0 — ra
x5 =0; x7=0; x457 = q57¢[x47, x5]c + qa5(1 — {)x5x47.
Here 09 = (1,123,23,1234,234, 4, 12345, 2345, 45, 5, 122324256, 1234756, 123456, 12346, 234256, 23456, 2346,
324256, 456, 46, 6, 122344553637, 122344552637, 122344452637, 12334452637, 2334452637, 122344452627,
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12334452627, 2334452627, 12334352627, 2334352627, 122324352627, 324352627, 12233346536472, 1233946536472,
1223446536472 1223445536472 1223445536372, 12232435627, 12232425627, 1223242567, 1233435627, 123425627,
12342567, 1234567, 1223445526472, 1223445526372, 1223444526372 123344526372 123467, 233435627,
32435627, 32425627, 23425627, 23344526372, 2342567, 234567, 23467, 3242567, 4567, 467, 67, 7} and the degree
of the integral is

a=80a1 + 156y 4+ 29003 + 36004 + 24405 + 12406 + 18207
8.12.7 The Dynkin diagram (8.114 c)

The Nichols algebra By is generated by (x;);e1, with defining relations

x112 =0;  x221 =05 x223 = 0; xij=0,i<j,q;=1
x332 =0; [x@3s),x4]c = 0;  [[x65, X657]c, x5]c = O; @117
x334 =0; x776 = 0;  [x@6),x5]c =0; [x457, x5]c = 0;
xf:O; x52=0; x§=0; xS:O,ani.

Here of = {12,123,3,1234,34,4, 12345, 345, 45, 5, 12324256, 1234?56, 123456, 12346, 22324256, 3456, 3456,
346, 456, 46, 6, 123344353637, 123344552637, 123344452637, 123334452637, 22334452637, 123344452627,
123334452627, 22334452627, 123334352627, 22334352627, 22324352627, 12324352627, 12243540536472,
1233540536472 1233440536472 1233945536472, 1233445536372, 12333435627, 1232435627, 1232425627,
123242567, 123425627, 12342567, 1234567, 1233445526472, 1233445526372 1233444526372 1233344526372,
123467,2233435627, 2232435627,2232425627, 3425627, 223344526372, 223242567,342567, 34567, 3467, 4567,
467,67,7) and the degree of the integral is

a = 80a1 + 216y + 290a3 + 360a4 + 24405 + 1246 + 182a7.
8.12.8 The Dynkin diagram (8.114 d)
The Nichols algebra By is generated by (x;);c1, with defining relations

xi2=0; x21=0; x23=0; x;=0, i<j qgj=1L
1332 =0; x334 =0; x443=0; x445 =0; x55 =0; (8.118)

x556 = 0; x557 =0; x775 =0; xé =0; xi =0, xe Oi.

Here 09 = (2,23,3,234,34,4,2345,345,45,5, 122232456, 2324756, 23456, 23456, 2346, 34256, 3456, 346,
456,46, 6, 1223344553637, 1223344552637, 1223344452637, 1223334452637, 1222334452637, 1223344452627,
1223334452627, 1222334452627, 1223334352627, 1222334352627, 1222324352627, 2324352627, 12243546536472,
12233540536472,12233446536%72 | 12233445536%72,12233945536372, 122333435627, 122233435627, 122232435627,
122232425627, 12223242567,12233445526472, 12233449526372, 232435627, 12233444 526372, 232425627, 23242567,
12233344526372,12223344526372, 23425627,2342567, 234567, 23467, 3425627, 342567, 34567, 3467, 4567, 467, 67,7}
and the degree of the integral is

A= 138a; + 216ap + 2903 + 360y + 244as + 12406 + 18207.
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8.12.9 The Dynkin diagram (8.114 e)

The Nichols algebra By is generated by (x;);c1, with defining relations
x112 =0;  x221 =05 x223 = 0; xij=0,i<j,q;=1
xs554 =05 [x@ay.x3]c = 0;  [[[x6547, Xalcs x5]c, xale = 05 8.119)
xs56 = 0; X665 =0;  [x35),%4]lc =0;  [x347, x4]c = 0; '
x774 = 0; x% =0; xf =0; xg =0, e (’)i.

Here 0 = (1,12,2,123,23,3,1234, 234,34, 4, 1223242526, 123242526, 12342576, 1234526, 23242526, 234256,
234526, 342526, 34526, 4526, 6, 122334454637, 122334354637, 122324354637, 12324354637, 2324354637,
122334454627, 122334354627, 122324354627, 12324354627, 2324354627, 12233445566472
1233445506472 122324252627, 12232425267, 1223445506472, 12324252627, 1232425267, 2324252627, 232425267,
1223345566472 1223344566472, 1223344546372, 1234252627, 234252627, 34252627, 123425267, 23425267, 3425267,
1223343546372, 1223243546372, 123243546372, 123452627, 12345267, 23243546372, 23452627, 2345267, 3452627,
345267, 452627, 45267, 67,7y and the degree of the integral is

g = 80a1 + 15602 + 228a3 + 29604 + 360a5 + 24406 + 124a7.
8.12.10 The Dynkin diagram (8.114 f)

The Nichols algebra By is generated by (x;);er, with defining relations
x112 =05 X443 =0; x445=0; x;;=0, i<j,gij=1
. . —_0- 2 _ 0. —0-
X554 = 0; X447 =0; x774 =0; x3=0; [xa3),x2]e =0; (8.120)
. . . 2 . 3 q
[x@4),x3]c =0; x556 =0; x665 =0; x3=0; x, =0, acO].
Here 0 = {1,12,2,123,23, 3, 12345, 2345, 345, 45, 122324256, 12324256, 1234256, 12346, 2324256, 234756, 2346,
34256, 346, 46,56, 122334453637, 122334352637, 122324352637, 12324352637, 2324352637, 122334452627,
122324252627, 12324252627, 2324252627, 1234252627, 234252627, 34252627,12233445536%72, 1233445536472,
1223445536472 1223345536472, 1223344536372, 12233435627, 12232435627, 1223242567, 1232435627, 123242567,
12342567, 12345627, 1223344526472, 1223343526372, 1223243526372 123243526372, 123467, 232435627, 2345627,
345627, 45627, 23243526372, 23242567, 2342567, 23467, 342567, 3467, 467, 567, 7) and the degree of the inte-
gral is

A= 80a; + 156a) + 2283 + 29604 + 244as5 + 12406 + 1820c7.
8.12.11 The Dynkin diagram (8.114 g)

The Nichols algebra By is generated by (x;);e1, with defining relations
x330=0; x334=0; xga3=0; x;=0, i<j,qij=1
X445 = 0; xssa=0; xaa7=0; x7=0; [xa3),x] =0; (8.121)

x774 =0; x556=0; xe65=0; x3=0; x2=0, ac of.
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Here 0] = {1,12,2,123,23,3,1234,234, 34,4, 1223242526, 123242526, 12342526, 1234526, 23242526, 234256,
234526, 342526, 34526, 4526, 6, 122334455637, 122334455627, 122334353627, 122324353627, 12324353627,
2324353627, 122324253627, 12324253627, 2324253627, 1234253627, 234253627, 34253627, 12233445566372,
1233445506372 1223445506372 1223345506372, 1223344506372 12233435367, 12232435367,  12232425%7,
1232435367, 1232425367, 123425367, 1234567, 1223344546272, 1223343546272, 1223243546272, 123243546272,
123457, 232435367, 232425367, 23425367, 3425367, 23243546272, 234567, 23457, 34567, 3457, 4567, 457, 567, 57}
and the degree of the integral is

= 80a1 + 156ay + 228a3 4+ 2964 + 360as + 124 + 1827

8.12.12 The Dynkin diagram (8.114 h)

The Nichols algebra By is generated by (x;);cr, with defining relations

x01=0; x23=0; x332=0; x;=0, i<}j,qj=1
x334 = 0; x443 =0, x445 =0; x447 =0; x774 = 0; (8.122)
. — 0 0 2 _ o 3 _ q

xss4 =05 xs556 =0; x665=0; x7=0; x;=0, 0 €O].

Here 0% = {1,12,2,123,23,3, 1234, 234, 34, 4, 12345, 2345, 345,45, 5, 123456, 23456, 3456, 456, 56, 6,
+

1223344546272 1223343546272 1223343536272 122334353672, 12232435%6272, 1223243536272, 122324353672,
1223242536272 122324253672, 122324252672, 12233445506374 1233445506374 123243546272 123243536272,
123242536272, 12342536272, 12324353672, 12324253672, 1234253672, 12324252672, 1234252672, 123452672,
1223445506374, 1223345506374 1223344506374, 1223344556374, 1223344556274, 23243546272, 23243536272,
2324353672, 23242536272, 2324253672, 2324252672, 2342536272, 234253672, 234252672, 23452672, 342536272,
34253672, 34252672, 3452672, 452672} and the degree of the integral is

a4 = 801 + 1562 + 2283 4 29604 + 360a5 + 2386 + 182a7.

8.12.13 The associated Lie algebra

This is of type E7.

9 Super modular type, characteristic 5

In this Section F is a field of characteristic 5.

9.1 Type br3j(2; 5)

Here 0 =2, ¢ € G§. Let

_(2 3 (2 4 2x2. I )
A_<—10)’A_(—1 0>€]F P p=CELD P =L =D G
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Letbtj(2; 5) = g(A, p) >~ g(A’, p), the contragredient Lie superalgebras correspond-
ing to (A, p), g(A’, p’). We know [29] that sdim btj(2; 5) = 10|12. We describe the
root system brj(2; 5) of brj(2; 5), see [3] for details.

9.1.1 Basic datum and root system

Below, G, and Aéz) are numbered as in (4.43) and (3.7), respectively. The basic datum
and the bundle of Cartan matrices are described by the following diagram:

(2)
G, 1 A,
o—eo .
ap ar

Using the notation (3.1), the bundle of root sets is the following:
A = {1,1°2,1%2, 172, 1722, 12%, 12, 2},
AP ={1,1%2,1°2,1°2%,1%2, 1722, 12, 2}.
9.1.2 Weyl groupoid
The isotropy group at a; € X' is
W(ar) = (g1, 63" c162) ~ Dy,
9.1.3 Incarnation
We assign the following Dynkin diagrams to a;, i € I5:

2 _#3 3 -1
S a6 — 3. ©.1)

¢
ap — o

9.1.4 PBW-basis and dimension
Notice that the roots in each Ai", i € Ip, are ordered from left to right, justifying the

notation Sy, ..., Bs.
The root vectors xg, are described as in Remark 2.14. Thus

{xgs .. xgixgll |0 <ng < Nﬁk} .
is a PBW-basis of 4. Hence dim B4 = 2452107 = 40,000.
9.1.5 The Dynkin diagram (9.1 a)

The Nichols algebra By is generated by (x;); 1, with defining relations

5 .10 . 5 ) )
x7=0; x5 =0; [x112,x12]7 =05 [[[x112, X12]¢s X12]65 X12]e = O;

10

: 9.2)
xy=0; x5, =0; x11112 = 0; [x1112, x112]c = 0.
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528 N. Andruskiewitsch, I. Angiono

Here O] = {1, 172, 1322, 12} and the degree of the integral is
=551 + 34a,.
9.1.6 The Dynkin diagram (9.1 b)

The Nichols algebra By is generated by (x;);e1, with defining relations

X310 = 0; x =0 x°=0; x2=0;
1112 112 1 2

p 5 9.3)
X1 =0; xi11112 =05 [x1,[x112, x12lele + g12x71, = 0.

Here O] = {1, 132, 122, 12} and the degree of the integral is
=551 + 23w,.
9.1.7 The associated Lie algebra

This is of type B>.

9.2 Type el(5; 5)

Here 0 =5, ¢ € G§. Let

01 0 00
-10 1 01

A=]0 -1 2 —10] e F>5; p=(-1,—-1,1,1,1) € G5.
0 0 -120
0 -10 02

Let el(5;5) = g(A, p), the contragredient Lie superalgebra corresponding to (A, p).
We know [29] that sdim ¢l(5; 5) = 55|32. There are 6 other pairs of matrices and
parity vectors for which the associated contragredient Lie superalgebra is isomorphic
to el(5; 5). We describe the root system e1(5; 5) of el(5; 5), see [3] for details.

9.2.1 Basic datum and root system

Below, Agl), C, and Agz) are numbered as in (3.2), (4.15) and (3.7), respectively. The
basic datum and the bundle of Cartan matrices are described by the following diagram:

@s5(Ds) 2 11 3 2T
e ——— o °
a, ag ar
1 5 4
O
@s(Ds) @4(Cs) As 5 4
° ° ° °
as aj az as
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Using the notation (3.1), the bundle of root sets is the following:

a]

A% = @y ({1, 12,2, 123,23, 3, 122324, 12324, 1234, 2324, 234, 34, 4, 12233435, 12233425, 12232435,
123%435,232435, 12232425, 1223344452 123344452, 1223245, 1232425, 123425, 122344452,
123745, 122334452 232425, 122334352 23425, 3475, 122374352 12324352 12345, 475,
2324352 23245, 2345, 345, 45, 5)),

A =(1,12,2,123,23, 3, 1234, 234, 34, 4, 12233435, 12232435, 12232425, 1232435, 1232475,
23243523745, 127334452 123475, 23475, 3425, 1227344753 1233%4435% 122394553,
122334352 122334353 122324352 12324352 2324352 122334453 12345, 122324252,
12324257 1234257 2345, 2374757 234252, 345, 34752 45, 5),

AP =1{1,12,2,123,23,3,1234, 1223242, 123%4% 12347, 234,23%4% 2347 34,347 4, 122334%5,
12233435 12232435, 1232435, 232435, 1223344552 123344552 12232425, 122344552,
1232425 122334552 123425, 122334452 232425 23425, 3425, 122334352 122324352,
12324352 12345, 2324352 2345, 345, 45, 5),

A% = w5({1,12,2, 123,23, 3, 1234, 234, 34, 4, 13233245, 12233245, 1423344252 1427334252,
142533452 12223245, 1424334252 192433452 1222345, 142432452 122235, 1920344253,
1324334252 132433452 132432452 132332452 1426344253 1425344253 1223245,
1425334253 122345, 142533453, 12235, 122332452 12345, 1235, 125, 2345, 235, 25, 5)),

AP = w5({1,12,2, 123,23, 3, 1234, 234, 34, 4, 1233245, 1223245, 122345, 12235, 127344252,
129334252 12533452 233245 1220344253 124334252 12345, 12433452 1235, 12%32452,
125, 120344253 12332452 125344253 129334253 12533453 223245, 24334252 2433452,
22345,2%32452 2235, 2332452 2345, 235,25, 5)),

A% =(1,12,2,123,23, 3, 1234, 234, 34, 4, 1223245, 122345, 12235, 123245, 122344252,

23245, 122334252 12233452 3245,12233%4253 12334252 12345, 123344253 2334252
2345, 122344253 1233452 233452 12232452 122334253 345, 1232452232452,
12233453 1235, 125, 32452, 235, 25, 35, 5),

AT =1(1,12,2,123,23,3,1234, 234, 34, 4, 1223345, 1223245, 122375, 123245, 12375, 23245,
2325, 122334252 12233452 1223344253 123344253 122344253 12345, 122324252,
12324252 2345,2324252 345, 122334253 12232452 1232452232452 45, 12233453,

123452, 1235, 23452, 235, 3452, 35, 5.

9.2.2 Weyl groupoid

The isotropy group at az € X' is

Wi(az) = (512, 657, 657, 647, 657 6463626562636465) =~ W(Cs).
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9.2.3 Incarnation

We set the matrices (q(i))ieﬂ7 , from left to right and from up to down:

wr
(S
~
wr
[3e]
\/\(“
N
|
—_
o~
e
o~
N
w~
5]
wr
(3]
\I\(‘
N
w~
5]
\I\p‘
)
w~
8]
xl\f‘
)
|
—_
~
|
—

[e]
[e]
o
[e]
@]
[e]
@]
[e]
[e]
[e]

o
o
(o]

9.4)

¢? ¢?
(o) o
g g
I S A S A = R R A
[e] [e] [e] (o) (o] (o) (e} 0]
(o] o
¢ _ 13
- \\ g \
A R B % 2T 2T o 2
[e] (o] (o] o (o] (o)
Now, this is the incarnation:
1y. . O e
ay — w@4(q'); ai—>q", i el

9.2.4 PBW-basis and dimension

Notice that the roots in each Afﬁ, i € Iy, are ordered from left to right, justifying the

notation By, ..., B41.
The root vectors xg, are described as in Remark 2.14. Thus

xgj: xgjxg: |0 <ny < N,gk}.

is a PBW-basis of By. Hence dim B, = 216525
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9.2.5 The Dynkin diagram (9.4 a)
The Nichols algebra By is generated by (x;);c1; with defining relations
xi2 =05 x01 =05 x23 =07 [[[xq4), x3]c, x2]¢c, x3]c = 0;

x554 = 0;  x443 = 0;  x4445 = 0; x% =0; Xij =0,i<], aij =1; (9.5

x) =0, ac O%;  [lxsaz2, xale, x3]c = g3 (&% — O)llxsa32, x3]c, X4lc.

Here of = {(1,12,2,1223%4,12324,23%4, 4, 1223245, 1232435,232435, 12232425, 1223344452, 123344452,
1223245, 1232425, 122344452 123245,232425, 122324352 12324352, 425, 2324352 23245, 45, 5) and the degree
of the integral is

= T2 + 136a + 192a3 + 208a4 + 108as.

9.2.6 The Dynkin diagram (9.4 b)
The Nichols algebra By is generated by (x;);c1; with defining relations
xi12=0; x21=0; x03=0; x;;=0,i<j,q;=1

x332 =0;  x334 =0;  [[x54, X543]¢c, x4]c = 0; (9.6)

2 _ - 2 _ - 5 _ q
x; =0; x5=0; x;=0, xeO].
Here 0§ = ({1.12,2,123,23,3,1223%435, 12232435, 1232435, 232435, 122334452, 1223394553 123344353,

122344553 122334553 12345, 122324252 12324252 12342522345, 2324252 234252, 345,34252 45y and the
degree of the integral is

a=T2a1 + 136 + 192a3 + 240a4 + 154as.

9.2.7 The Dynkin diagram (9.4 c)

The Nichols algebra By is generated by (x;);c1; with defining relations

x12=0; x21=0; x3=0 x332=0; x;=0, i<j,g;=1L ©7)
X334 =0; xaaa3 =0; xa5=0; x2=0; x)=0, a0l

Here 0 = (1,12,2,123,23,3, 1234, 1223%42,123242,12342, 234,23%42 2342 34,342, 4, 1223344752 123344552,
122344552, 122334552, 122334452 122334352 122324352, 12324352, 2324352} and the degree of the inte-
gral is

a= T2 + 1360y + 1923 + 2404 + 88as.
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9.2.8 The Dynkin diagram (9.4 d)

The Nichols algebra By is generated by (x;);c1; with defining relations

x332 =0; 334 =0; [x(3),x2]c=0; x

x443 =0; x550=0; [x125,x2]c =0; x
9.8)

Here o = (12,123,3,1234,34,4, 1233245, 129344252 129334252 1233452, 1220344253, 12345, 1235, 125,
12332452 125344253, 125334253 12533453, 223245, 24334252 2433452 22345, 2432452 22355y and the
degree of the integral is

A= T2 + 3000 4+ 208a3 + 108a4 + 154as.

9.2.9 The Dynkin diagram (9.4 e)

The Nichols algebra By is generated by (x;);c1; with defining relations

1021 =0; x03=0; x332=0; x25=0; x;;=0,i<}],q;=1; ©.9)
xs50=0; x334=0; xg43=0; x3=0; x>=0, € o1.

Here 0 = (2.23,3,234,34,4,12233%45, 1423344252 1423334252 142533452 12223245, 1424334252
142433452 1222345, 142432452, 120235, 1420344253 1425344253 1425334253 142533453 1223324522345, 235,
25,5} and the degree of the integral is

A= 23001 + 30002 4 208c3 + 1084 4 154as.

9.2.10 The Dynkin diagram (9.4 f)

The Nichols algebra By is generated by (x;);c1; with defining relations

x112=0; [xazxle =0; x3=0; xij=0,i<j,gij=1

x4y =05 [x@epx3le =05 x5 =05 [Ixs3, xs3ale, x31e = 0;
['x1257-x2]c = O, x% = O’ xgt — O’ o € Oq, (910)

35
X235 = gzq—[ms, x3]e +g23(1 — £)x3x25.

+¢

Here 0 = (1,123,23,1234, 234, 4, 122345, 12235, 123245, 122344252, 23245, 1223344253 12334252, 123344253,
2334252,1233452, 233452, 12232452, 122334253, 345, 12233453, 125,32452,25,35) and the degree of the
integral is

a=T2a1 + 136, + 208a3 + 108a4 + 154as.
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9.2.11 The Dynkin diagram (9.4 g)
The Nichols algebra By is generated by (x;);c1; with defining relations

x112 = 05 x21 = 0; xij=0,i<j,qj=1;
x3=0; xp3=0; xs553=0; [[[x1235, x3]¢c, x2]e, x3]c = O;
X3 =07 xss4=0; [xoa.x3le=0; x)=0, a0 ©.1D)
X(35) = q45¢[x35, xale + q3a(1 — £)xgxss.

Here 0f = {1,12,2,1234, 234,34, 1223345, 122325, 123%5,23%5, 12233452, 1223344253 123344253, 122344253,
12345, 122324252 112324252, 2345,2324252 345, 12233453, 123452, 23452, 3452, 5} and the degree of the
integral is

a= T2 + 136 + 192a3 + 1084 + 154as.
9.2.12 The associated Lie algebra

This is of type Cs.

10 Unidentified
The root systems in this Section are denoted by ufo(h), 8 # h € Iy2; the correspond-

ing Nichols algebras are called collectively ufo(#). However ufo(7) has two different
incarnations, that are called ufo(7) and ufo(8) respectively.

10.1 Type ufo(1)

Here ¢ € G),. We describe first the root system ufo(1).

10.1.1 Basic datum and root system

Below, As, Ds, 2T and 77 are numbered as in (4.2), (4.23) and (3.11), respectively.

The basic datum and the bundle of Cartan matrices are described by the following
diagram:

@1 (Ds) As 4 2T 5 s45(As)
° ° ° Emm— °
aj ap aj a,
1 3 3

@1(Ds) 2 @2(1T1) s45(1T1) 2 @3(Ds)
° ° ° Em— °
as ag az ag

4 4 1

@2(As) 5 534(2T) 3 s534(As) @3(Ds)
° _— ° _— ° °
ag ajo ar an

Using the notation (3.1), we set:

A = (1,12,2,123,23, 3, 122324, 12374, 1234, 2374, 234, 34, 4, 12233435, 12237475,
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12232425, 1232425, 232425, 123425, 23425, 3425, 122334352 1223245, 123245,
12345, 23245, 2345, 345, 45, 5},

AP = (1,12,2,123,23,3, 1234, 234, 34, 4, 12233475, 12232435, 12232425, 1232435,
1232425, 232435 232425, 122334452 123425, 23425, 3425, 122334352 122324352
12324352 12345, 23243522345, 345, 45, 5},

A = {1,12,2,123,23,3, 1234, 234, 34, 4, 1223245, 122345, 12235, 123245, 23745,
122334252 12233452 3245, 12345, 2345, 12232452345, 12324521235, 125,
232452235, 25,35, 5,

Aﬁ“ ={1,12,2,123,23,3, 1234, 234, 34, 4, 1223345, 1223245, 122325, 123245, 12325,
23245,2325, 122334252 1223345212345, 2345, 345, 12232452 1232452, 1235,
232452235, 45,35, 5},

AS? ={1,12,2, 123,23, 3, 1234, 234, 34, 4, 13233245, 12233245, 12223245, 1222345,
122235, 1324334252 132433452 1223245, 132432452 122345, 132332452 12345,
122332452 12235, 1235, 125, 2345, 235, 25, 5},

A® = 11,12,2,123,23,3, 1234, 234, 34, 4, 1233245, 1223245, 122345, 12235,273%45,
124334252 12433452 223245, 12%3245% 22345, 12345, 12332452 1235, 125, 2345,

2332452 2235, 235, 25, 5).

Now the bundle of sets of (positive) roots is described as follows:

ay — i (Af)) ,  ayt> A(l), az — A(4), aq > S45 (AE?) s
as +— wl(Af)), ag — o (Af)) , a7 b> 845 (Af)) , agt> w3 (Af)) ,

2 4 1 6
ag — @y (AS_)) , ajpb> S34 (Ag_)) , aj] > 34 (Ag}) , dajp — w3 (Ag_)) .

10.1.2 Weyl groupoid

The isotropy group at a; € X' is

W(a) = (g1 6263646564636261. 65, 651, 64 '. 651 ) = W(As).

10.1.3 Incarnation

We set the matrices (q(i))ie]l6, from left to right and from up to down:
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—1 -1
[e] [e]
¢ -1 -1 ¢ I3 | 1
PSS S S S L S LS S ¢ (10.1)
¢ ¢
[e) [e]
I3 I3
-1 ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ ¢ ¢ ¢t T ¢
[e] (o] [e] [e] (o] [e] [e] [e]
Now this is the incarnation:
ar = @),  a > qP, az > q@, as > s45(q?),
as > @1(qY),  agr 20q?), a7 55@P),  ag > @3,

ag > @2(q?),  ai > 5@, an e su@?),  an - @309).
10.1.4 PBW-basis and dimension
Notice that the roots in each Ai", i € Ij2, are ordered from left to right, justifying the
notation fi, ..., B30.

The root vectors xg, are described as in Remark 2.14. Thus

n3o na nj

Xgio - Xp,Xp) |0 <ni < N,gk} .
is a PBW-basis of 4. Hence dim B = 215415 = 2%,
10.1.5 The Dynkin diagram (10.1 a)
The Nichols algebra By is generated by (x;);c1; with defining relations

x112=0; x221=0; x203=0; [[[xq4,x3]c, x2]c, x3]c =0;
X554 = 0; x§4=0; x32=0; xf:O; xij=0,i<j,g;=1 (10.2)
xo =0, a €0 [[xas), ¥3le, ¥ale = 34 [[x25), Xale, X3]e-

Here 0] = (1,12,2,122324,12324,23%4, 12233435, 123425, 2345, 3425, 122334352 1223245, 123245, 23245, 5},
and the degree of the integral is

a=33a; + 60y + 8laz + 7004 + 38as.
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10.1.6 The Dynkin diagram (10.1 b)

The Nichols algebra By is generated by (x;);c1; with defining relations

xi2=0; x21=0; x023=0; x;=0, i<j qgj=1
N A Y ; (10.3)
x332=0; x334=0; x55¢=0; x57=0; x,=0, x€O}.

Here 0f = (1,122,123, 23,3, 12233435, 1223245, 1232435, 232435, 122334352, 122324352, 12374352, 2324352,
53, and the degree of the integral is

A =331 + 60ar + 8laz + 96ay4 + Slas.

10.1.7 The Dynkin diagram (10.1 c)

The Nichols algebra By is generated by (x;);c1; with defining relations

[xa3z), X2le =0; x112=0; xa3=0; x;=0, i<j,qj=1
[x24), x3]c = 0; x% =0; x§5 =0; x% =0; xi =0, e Oi; (10.4)

[x125, x2]c = 0;  x% = 0; x235 = 2¢23x3%25 — q35(1 + £)[X25, X3].

Here 09 = (1,123,23, 1234, 234, 4, 122345, 12235, 122334252, 12233452, 3245, 1232452, 125, 232452, 25}, and
the degree of the integral is

A= 33ay + 60a2 + 81z + 384 + Slas.

10.1.8 The Dynkin diagram (10.1 d)

The Nichols algebra By is generated by (x;);ey; with defining relations

x112 =05 x221 =05 x23 =0; xij=0,i<j,q;=1

2 . 2 . .

x3=0; x4 =0; [[[x1235.%3]¢, x2]¢c, x3]c = 0;
. 2 . 2 . 4 . 10.5
raasle =0; x2=0;  x35=0; x=0ac0l: (10:5)

qas(1 +¢)
X@35) + T[Xss, X4le — q34(1 — $)xax35 = 0.

Here of = (1.12,2,1234,234, 34, 1223345, 122325, 12325, 2325, 122334252, 12232452, 1232457, 232452, 45},

and the degree of the integral is

A= 33a + 60a2 + 81z + 38axrs + Slas.
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10.1.9 The Dynkin diagram (10.1 e)

The Nichols algebra By is generated by (x;);c1; with defining relations

[xa3), x2]e =0; x330=0; x334=0; x
(13), 22l (10.6)
[x125, x2]c = 0;  x443=0; x550=0; x

Here 09 = (12, 123,3, 1234, 34,4,233%45, 124334252, 12433457, 12432452, 12345, 1235, 125,233%452, 5}, and
the degree of the integral is

a=33a; + 960y + 70a3 + 38a4 + Slas.

10.1.10 The Dynkin diagram (10.1 f)

The Nichols algebra By is generated by (x;);c1; with defining relations

x01=0; x03=0; xp5=0; x50=0; x;;=0,i<jgj=1L (10.7)
x32=0; x334=0; xa3=0; x}=0; x}=0,0a¢ o1, '

Here 09 = (2,23,3,234,34,4,13233245, 1324334252, 132433452, 132432452, 132332452, 2345, 235, 25, 5}, and
the degree of the integral is

= 65a; + 960y + 70a3 + 38a4 + Slas.

10.1.11 The associated Lie algebra

This is of type As.

10.2 Type ufo(2)

Here ¢ € (GZ‘. We describe first the root system ufo(2).

10.2.1 Basic datum and root system
Below, Ag, E¢, 3T and »T7 are numbered as in (4.2), (4.28) and (3.11), respectively.

The basic datum and the bundle of Cartan matrices are described by the following
diagram:
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S465£E6)
aj
1]

5465 £E6) A.s 5 3.T 6 556 (.A6)
ar az as as
2| 4| 4|

5465£E6) 3 3465(.2T1) Sse(ng) 3 556 (.Eﬁ)
ae ay ag ag

5| 5| 2|

S465£A6) 6 S45(.3T) 4 S45(.A6) S56(.E6)
aio ar ap a3

1]
s56(E6)
°
ap

Using the notation (3.1), we set:

A = (1,12,2,123,23, 3, 1234, 234, 34, 4, 12232475, 1232475, 123475, 12345, 232475, 23475,
2345, 3425, 345,45, 5, 122334%536, 1223343536, 1223243536, 123243536, 23243 5%,
1223344526, 1223343526, 1223243526, 123243526, 23243526, 12233%455%62 1233%455%62,
1223242526, 127374756, 1273%475%6%, 123242526, 12324756, 23247526, 2324756,
12233435462 122334%5%62 | 12233445362, 12342526, 2342526, 342526, 1234756,

234256, 34256, 12233435362, 12232435362, 1232435362, 1234526, 123456, 232435362,
234526, 23456, 34526, 3456, 4526, 456, 56, 6},

AP = (1,12,2,123,23, 3, 1234, 234, 34, 4, 12345, 2345, 345,45, 5, 1223343536, 122324357,
1223242536, 1223242526, 123243536, 123242536, 123242526, 23243536, 23242576,
23%475%6, 12233445562, 12342536, 2342536, 347536, 12233445462, 12233435462,
122339435063, 12334435063, 1223447563, 12233435362, 12342526, 1234526, 12232435462,
1232435%62 123456, 12233495063 12232435362 2342526, 12233445063, 12232425362,
234526, 12233445963 1232435362, 1232425362, 123425362, 232435462, 23456, 232435362,
232425362, 23425362, 342526, 34526, 4526, 3425762, 3456, 456, 56, 6},

Af) ={1,12,2,123,23,3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 23245, 2345, 235, 3245,
345,35, 5, 1223943536, 1223542536, 1223442536, 123442536, 2342536, 1223442526,
12342526, 23442526, 1223342526, 123342526, 23342526, 3342526, 122330435462,
12330435462 12230435%62, 12239435%62, 12239435362, 122334526, 122324526,

12232456, 12334526, 12324526, 1232456, 123456, 12237425462 12237425362,
1223425362 123%425362, 12356, 2334526, 334526, 23245%6, 3245%6, 234425362 232456,
23456, 2356, 32456, 3456, 356, 56, 6},

AS‘_” ={1,12,2,123,23,3, 1234, 234, 34, 4, 12223245, 1223245, 123245, 12345, 1235, 23245, 2345,
235,345, 35, 5, 13243943536, 13243942536, 13243442536, 13233442536, 12233442536,
13243442526, 13233442526, 12233442526, 13233342526, 12233342526, 12223342526,
1223342526 142530435462 1323334526, 132930435%62, 132430435462 132439435462,
132435435362, 1223334526, 1222334526, 1222324526, 122232456, 132437425%62,
132433425362, 122334526, 132434425362 122324526, 12232456, 132334425362 122334425362,
12324526, 1232456, 123456, 12356, 2324526, 232456, 23456, 2356, 3456, 356, 56, 6},
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A = (1,12,2,123,23,3, 1234, 234, 34, 4, 12232475, 1232475, 123475, 12345, 237425, 23475, 2345,
3475,345, 45,5, 122334536, 122334%5%6, 1223343526, 1273%4%5%6, 123743 5%6, 23243 5%,
1223242526, 123242526, 23747526, 12342526, 2342526, 347576, 17233%47536%, 12%3%455%¢2,
12234475362, 12233475362, 122334%5362, 122334356, 122324356, 122324256, 12324356,
1232456, 1234256, 123456, 1223344526, 2324356, 12233435267, 12232435767, 1237435262,
12346, 2324256, 23456, 34256, 232435262, 23456, 2346, 3456, 346, 456, 56, 46, 6},

Aﬁf) = {1,12,2,123,23,3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 223245, 23245, 2345, 235,
345,35, 5, 1243%43536, 1243742536, 1243442536, 1233442536, 233442536, 12434425%6,
1233442526, 233442526, 1233342526, 233342526, 1223342526, 223342526, 122530435462,
12530435462 12430435%62 12439435%62, 12439435362, 123334526, 1223345%6, 122324526,
12232456, 12324526, 1232456, 123456, 12439425462 12439425362 12439425362 12334425362,
12356, 23334526, 22334526, 22324526, 2324526, 2334425362 2232456, 232456, 23456, 2356,
3456, 356, 56, 6},

A = (1,12,2,123,23,3, 1234, 234, 34, 4, 1223245, 123245, 12345, 1235, 23745, 2345, 235, 345, 35,
45,5, 1223343536, 1223342536, 1223242536, 123242576, 23242536, 1223342526, 1223242526,
123242526, 23242526, 12342526, 2342526, 342526, 12233%435%62 1233443562,

12234435462, 12233435462 12233435362, 122334526, 122324526, 12232456, 12324576,
1232456, 1234526, 123456, 12233425%62 12233425362 12232425362 1232425362, 12356,
2324526, 234526, 34526, 4526, 232425362, 232456, 23456, 2356, 3456, 356, 456, 56, 6).

Now the bundle of sets of (positive) roots is described as follows:
aj — S465 (AS@) s apy — S465 (AS‘_L)) s az — A(l), as — A(S),
as — ss¢ (Af)) , ag > 5465 (Af)) , a7 > S465 (ASZ)) , ag > ss6 (AEZ)) ,
ag = 56 (Af)> . a10 7> 8465 (Af)) ,oap e S45(AS)), apy = $45 (AS:)) ;

a3 > ssg (Af)) , a4 > 856 (A(f)) )
10.2.2 Weyl groupoid
The isotropy group ata; € X is
W(a1) = (61" 62636465665554536261, 65 . 65, 64+ 65, o) == W (Ee).
10.2.3 Incarnation

We set the matrices (q);c[,, from left to right and from up to down:

(10.8)
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¢ ¢
(o) [e]
3 3
¢ ¢ -1 ¢ -1 ¢ ¢ ¢ ¢ -1 ¢ -1 ¢ ¢ ¢t ¢ ¢ ¢
(] o (o] (] (e} [e] [e] o] (o] 0]
—1 g’
(e} (o)
N z
¢ ¢ ¢ttt -1 ¢l -1 ¢ ¢ ¢ ¢ ¢ ¢t ot ¢
(o] (o) o (o] (o] [e] (o) [e] (o]
~1
[e]
—1
N
¢ ¢ ¢ ¢ -1 -1 ¢ ¢
[e] (o) [e] [e] 0]
Now this is the incarnation:
a > s465(0®),  ar > s46s(@?), a3 > g, as — q%,
as > ss56(q?), ag > 54650, a7 > s165(q@ "),  ag > s56(q7),
a9 - 556(q%), a0 > s165(@?),  an > s15@®),  an > sas@D),
a3 > s56(q?),  aia > 556(q).

10.2.4 PBW-basis and dimension
Notice that the roots in each Ai", i € I[14, are ordered from left to right, justifying the

notation B, ..., Be3.
The root vectors xg, are described as in Remark 2.14. Thus

{xggj xgjxgll |0 <ng < N,gk} .
is a PBW-basis of B,. Hence dim B, = 227436 = 29,
10.2.5 The Dynkin diagram (10.8 a)
The Nichols algebra By is generated by (x;);e1, With defining relations
x112 =05 x221 =0; x203 =0; xij=0,i<j,gj=1;
x332=0; x334 =0; xe65 =0; [[[x5).%4]c, x3]c, x4]c = 0;

10.9
xZ:O; x52:0; x§5=0; xé:O,anq; ( )

[[x36), Xales x51c = qas¢[[x36)s X5]c, X4le-
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Here 0f = {1.12,2,123,23,3, 12232425, 1232425, 123425, 232475, 23475,3425, 1223343536, 122324353,
123243536, 23243536, 1223344526, 122334455462, 12334455%62, 122324256, 12234455462, 12324256, 2324256,
12233435%2, 1234256, 234256, 34256, 12233435362, 12232435362, 1232435362, 1234526, 232435362, 234526,
34526, 4526, 6), and the degree of the integral is

a=T8a1 + 1500 4+ 21603 + 27604 + 2265 + 1160.
10.2.6 The Dynkin diagram (10.8 b)

The Nichols algebra By is generated by (x;);er, With defining relations

x112=0; x221=0; x203=0; x;=0,i<j,q;=1
x332 =0; x334 =0; x443=0; (10.10)
. . 2 . 4 q
xa45 =07 xee5 =0;  x5=0; x;,=0, ¢ €O].
Here of = {1,12,2,123,23,3,1234,234, 34, 4, 1223343536, 1223243536, 1223242536, 12324353,
123242536, 23243536, 23242536, 12342536, 2342536, 342536, 122334455063 12334455063, 12234455663,

12233435362, 12233435063, 12232435362, 12233445063, 12232425362, 1232435362, 1232425362, 123425362,
232435362, 232425362, 23425362, 3425362, 6}, and the degree of the integral is

a=T8ax1 + 1507 + 216a3 + 27604 + 3305 + 168w.
10.2.7 The Dynkin diagram (10.8 c)

The Nichols algebra By is generated by (x;);e1, with defining relations

[x13), 2] =0 x112=0; x443=0; x;;=0,i<j,q;=1

[x236, x3]c = 0;  x445 =0; x554 =0; X663 = 0; (10.11)

[x@4), x3]c = 0; x22 =0; x% =0; x;‘ =0, axe (91.
Here 09 = (1,123,23,1234,234, 4, 1223245, 12345, 1235, 2345, 235, 5, 1223°43536, 1223°42536, 12344253,
23442536, 123442526, 23442526, 3342526, 122330435462, 12330435%62, 1223%435%2, 12235435362, 122324526,
12232456, 123456, 12235425462, 12235425362, 1234425362, 12356,334526, 134425362, 23456, 2356, 56, 6}, and the
degree of the integral is

a = T8y + 15003 + 3303 + 22604 + 116a5 + 1680.

10.2.8 The Dynkin diagram (10.8 d)

The Nichols algebra By is generated by (x;);e1, With defining relations

w32 =0 x334=0 x336=0; x;;=0,i<j,q;=1
X663 = 0;  x443 = 05 xa45 = 0;  [x(13), x2]c = 05 (10.12)

X554 = 0; x12=0; x%:O; xi:O,ani.
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Here 0§ = (12.123,3,1234,34,4, 123245, 12345, 1235, 345, 24, 5, 1243343536, 1243942536, 124344253,
233442536, 1243442526, 233442526,233342526, 122530435462 12430435462, 12435435462, 12439435362, 12324526,
1232456, 123456, 12435425462, 12435425362, 12434425362, 12356, 23334526, 2334425362, 3456, 245, 56, 6}, and
the degree of the integral is

a = T8y + 26002 + 330c3 + 22604 + 11605 + 1680s.

10.2.9 The Dynkin diagram (10.8 e)

The Nichols algebra By is generated by (x;);e1, with defining relations

xi2=0; x21=0; x03=0; x;=0,i<j,gj=1

2 ) ) ) )
xpe =05 x330=0; x334 =0; [[[x2346, Xalc, x3]¢, xalc = 0;

x3=0; x}=0; x2=0; x'=0, ac0l; (10.13)
gs56(1 +¢)
[x@35), Xale =05 x@6) = qas(1 — {)xs5x46 — T[X%» x5]c.
Here 0% = (1.12,2,123,23,3,1223%4%5, 1232425, 123425, 232425, 23425, 3425, 122334%536, 122324252,

123242526, 23242526, 12342526, 2342526, 342526, 122334455362, 12334455362, 12234455362, 12233455362,
122334356, 122324356, 12324356, 2324356, 12233435262 12232435262, 1232435262 12346, 232435262, 2346, 346,
56,46}, and the degree of the integral is

a=T18a1 + 1500 + 21603 + 2764 + 11605 + 168c6.

10.2.10 The Dynkin diagram (10.8 f)
The Nichols algebra By is generated by (x;);ej, with defining relations
x21=0; x023=0; x332=0; Xx;;=0,i</j,q;jj=1

X334 =0; x336 =0, x443 =0; x445 =0 (10.14)

X554 = 0; X663 = (); x% = 0; xi = 0, (VS Oj_.

Here 0] = (2.23,3,234,34,4,23%45,2345,235, 345,24, 5, 13243343536, 13243542536, 13243442536,
13233442536, 13243442526, 13233442526, 13233342526, 1323334526, 132530435462, 132430435462, 132435435462,
132439435362, 132435425462, 132435425362, 132434425362, 132334425362, 2324526, 232456, 23456,2356, 3456, 245,
56,6}, and the degree of the integral is

a = 184a1 + 260ay + 330a3 + 22604 + 11605 + 168w.
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10.2.11 The Dynkin diagram (10.8 g)

The Nichols algebra By is generated by (x;);e1, With defining relations

(x4, %3] =0; x112=0; x21=0; x;;=0, i<j,q;=1
[x236, ¥3le = 0; X203 =0; xss4=0; xg=0; xj5=0; (10.15)
xas) xale =0;  x3=0;  xf=0; x;=0 «ecOL |

X346 + qas(1 + O)[x36, x4lc — 2q34x4x36 = 0.
Here of = {1, 12,2, 1234,234, 34, 1223245, 123245, 1235, 23345, 235, 24, 1223343536, 1223242536, 12324253,
23242536, 12342526, 2342526, 342526, 122334435462 12334435462 12234435462, 12233435362 122334526,
12232456, 1232456, 12233425462, 12232425362 1232425362, 12356, 4526, 232425362, 232456, 2356, 245, 6}, and
the degree of the integral is
a="T8a1 + 1500 4+ 21603 + 22604 + 1165 + 168a.
10.2.12 The associated Lie algebra

This is of type Eg.

10.3 Type ufo(3)

Here ¢ € G. We describe first the root system ufo(3).

10.3.1 Basic datum and root system

Below, A3, B3, C3 and T® are numbered as in (4.2), (4.7), (4.15) and (3.12),
respectively. The basic datum and the bundle of Cartan matrices are described by
the following diagram:

S13(.Bs) 2 T(z) 3 S23(.A3)
ap az as
1] 1] 1]
513(B3) 5123(C3) 523(C3) Bj
° ° ° °
as as ag ar
3 3 3
5123£A3) 1 Sl}(f(z)) 2 li3
asg ag aio

Using the notation (3.1), we set:

Al = q1,12,2,12233,12223, 1223122332, 123,23, 3),
AP = (1,12,2,12%3,1273,223,12%32, 123,23, 3),
Af) ={1,122,12,2, 13223, 12223, 1223, 123, 23, 3},

Af) = {1,122, 12,2, 12223, 1223, 1223, 123, 23, 3},
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A = (1,172,122, 13273, 1323, 1723, 123,23, 3).

Now the bundle of sets of (positive) roots is described as follows:

aj = s13 (AS?) , ap — A(j), az +— $23 (Af)) , as > 513 (AS?) ,
1 1 4 2
as > s123 (Ai)), as > $23 (Ai)) , ay > ASF), ag > s123 (Ai)) )

ag > S13 (A?) . ap > Ag).
10.3.2 Weyl groupoid
The isotropy group at a; € X is
Wias) = (65*, 63%) = W(A2).
10.3.3 Incarnation

We set the matrices (q(i))ieﬂs, from left to right and from up to down:

S S S Tt S B S B et ¢ -1 -1 ¢ =t
o) o ] O —— o0 —— O o o — O
- -t - - —1
g ¢ OC ¢ Of ) = (10.16)
SN
¢ —1 -1
O——mmm O
Now this is the incarnation:
ap — A(S), ar +— A(S), as +— $23 (Af)) , a4 > A(4),

as > 5123 (Aﬂ)) , ae > 523 <A$)> , ar> S13(Af)), as > 123 (Af)> ;
ag — §13 (A@) , aio — S13 (Af)) .

10.3.4 PBW-basis and dimension

Notice that the roots in each Aﬁf, i € 1o, are ordered from left to right, justifying the
notation S, ..., Bio.

The root vectors xg, are described as in Remark 2.14. Thus

S 10 < m < Np, |
is a PBW-basis of ;. Hence dim B, = 243363 = 2736.
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10.3.5 The Dynkin diagram (10.16 a)

The Nichols algebra By is generated by (x;);cr; with defining relations

01 =0; x;3=0; x7=0; [xa3,x23]%=0;
3 6 p (10.17)
x332=0; x3;=0; x3=0; [[xq3),x2]lc, x2], =0.
Here, Oi = {o3, o1 + 32 + a3} and the degree of the integral is
=151 + 427 + 26as3.
10.3.6 The Dynkin diagram (10.16 b)
The Nichols algebra By is generated by (x;);ey; with defining relations
x332 =0; x13=0; X% =0; [xlz,[X(B),xz]c]g =0;
(10.18)

xP=0; x$=0; [xas).lxaz), x]18 = 0.
Here, Oi = {201 + 32 + a3, 21 + 302 + 203} and the degree of the integral is
a=29; + 42 + 26a3.
10.3.7 The Dynkin diagram (10.16 c)

The Nichols algebra By is generated by (x;);cr; with defining relations

x332 = 0;  [[x12, x(13)les X2]c = 0; X1612 =0; [x112,x12]c = 0;

x13 =0; xf =0; x% =0; x§’ =0; [xl,x(lg)]f =0. (1019
Here, Oi = {201 + a2, 201 + @2 + @3} and the degree of the integral is
a =291 + 20 + 15a3.
10.3.8 The Dynkin diagram (10.16 d)
The Nichols algebra By is generated by (x;);cr; with defining relations
2 =0; x3=0; x =0; x332=0; (1020)

x3=0; x$=0; x$=0; x% =0.
Here, (’)i = {as + a3, @3} and the degree of the integral is

a = 15a1 + 20 + 15a3.
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10.3.9 The Dynkin diagram (10.16 e)

The Nichols algebra By is generated by (x;);cr; with defining relations

i3 =0; =0 x5 =0 [z, xi2le = 0;
x5 =0; x32 =0; xp, =0; [xlz,x(w)]? =0; (10.21)

23¢ —
X(13) = lq E[xla,xz]c — q12§x2x13.

Here, Oi = {on + a3, 201 + 202 + @3} and the degree of the integral is
=291 + 260 + 15a3.
10.3.10 The associated Lie algebra

This is of type A} x Aj.

10.4 Type ufo(4)

Here ¢ € G. We describe first the root system ufo(4).

10.4.1 Basic datum and root system

Below, A3, C3, C3"” and T are numbered as in (4.2), (4.15), (3.5) and (3.12),

respectively. The basic datum and the bundle of Cartan matrices are described by the
following diagram:

523(C3)

°

aj

3
(1)
Cg 3 G 2 mq@) 1 s12(A3)
ap as as as
1| 1| 2
T((.33) 3 1‘13 2 823(Z(2)) 1 S123.(C3)
ag az ag ay

Using the notation (3.1), the bundle of root sets is the following:

A% =sp3((1, 12,123, 1223, 1232, 12232, 12233, 2, 23,232, 3)),
A =(1,12,123,122,1223,1233, 12332, 2,223, 23, 3,

A =11,12,123,1223,12%3, 12232, 12332, 2,223, 23,3},
A% =(1,12,13, 123, 1223, 12232, 12332,2,223,23, 3,

AP = s1p((1,12,12223,123, 1223, 12233, 122332, 132432 2,23, 3)),
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A% =1,12,122,1%2%3,123,12%3,12233%,12233,2, 23,3},
AT = {1,12,12223,123,12233, 1223, 12232, 122332 2, 23,3,
A% =(1,12,122,122%3,13, 1223, 123, 1223, 2,23, 3},

AP = 510311, 12,123, 1223,1233, 12332, 12432,2,223,23, 3)).
10.4.2 Weyl groupoid
The isotropy group at a; € X is

W(ar) = (652, 612 6261) ~ Z/2 x Z/2.
10.4.3 Incarnation

We set the matrices (q("))ieﬂ9 , from left to right and from up to down:

-1 -1 -1 =¢ ¢ -1 ¢ ¢ -t -1 -1 ¢ ¢ -t -1
o — O [e] [e] [e] (e} [e] [e] [e]
—1 -1 ¢ -1 -1 -1 -1 ¢ - -¢ -1
[e] _ [e] o — O O — 0 —— O
7 X
4 ¢ ¢ (10.22)
O —— O
-1 ¢ -1 —-¢ -1 ¢ -1 ¢ ¢ -1 -1
O —— O — O [e] [e] [e] 0]
P
—¢ - -1
[e]
Now, this is the incarnation:
ar — s23(q"); ai > s13(q'), i =4, 8;
ai — s1p(q), i =5,9; ai—q¥,i=23,6,7.

10.4.4 PBW-basis and dimension
Notice that the roots in each Aﬂ, i € Iy, are ordered from left to right, justifying the

notation S, ..., Bi1.
The root vectors xg, are described as in Remark 2.14. Thus

{le'll xgjxgll |0 < ny < N,gk} .
is a PBW-basis of 4. Hence dim B, = 27336 = 283*.
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10.4.5 The Dynkin diagram (10.22 a)

The Nichols algebra By is generated by (x;);cr; with defining relations

xf =0; x5 =0; [x332, x¥32]c = 0;
x3=0; [[xa3), x3)e, 2210 = 0; [x3321, x321]c = 0; (10.23)
x13 =0; x122 =0; [[x32, x321]c, x2]c = 0.

Here, (’)j_ = {01 + 202 + 23} and the degree of the integral is
a= 1201 + 220, + 24as3.
10.4.6 The Dynkin diagram (10.22 b)

The Nichols algebra By is generated by (x;);cr; with defining relations

2 . 3 . 6 . 2 . .
xl =O, x2 = O, x12 =0, .X3 = 0, X13 = 0,

(10.24)
[x223, x23]c = 05 [x1, x223]c = qi2x2x123 — g23[X123, X2]c-
Here, Oi = {o1 + a2} and the degree of the integral is
a=12a1 + 240 + 10a3.
10.4.7 The Dynkin diagram (10.22 c)
The Nichols algebra By is generated by (x;);er; with defining relations
2 3 2 6
x7 =0; x; =0; x3=0; X =0;
: 2 3 (3) (10.25)
x201=0; x13=0; [x23,x23]c=0.
Here, (’)j_ = {01 + a2 + @3} and the degree of the integral is
= 1201 + 24ar + 16as3.
10.4.8 The Dynkin diagram (10.22 d)
The Nichols algebra By is generated by (x;);cr; with defining relations
2 _ 0 3_ 0 —0-
xp=0; x3=0; [x221,x21]c =0;
=0, x5 =0 [xa3,01°=0; (10.26)
g3 — 1) =
X203 =0; x3) = T[XB»XZ]C + q12(1 — {)x2x13.
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Here, Oi = {o1 + 202 + a3} and the degree of the integral is
= 16a; + 240 + 12a3.
10.4.9 The Dynkin diagram (10.22 e)

The Nichols algebra By is generated by (x;);ey; with defining relations

2 _q. 2 _q. 2 _ o )
x1=0; x3=0; x3=0; [x12,[x123, x123]c]lc = 0;

X ; ‘ (10.27)
X =0; x33=0; x;3=0; [x12, xa3)]; = 0.

Here, (’)i = {201 4+ 20p + a3} and the degree of the integral is
a = 24a1 + 300 + 16a3.
10.4.10 The Dynkin diagram (10.22 f)
The Nichols algebra By is generated by (x;);ey; with defining relations
x3=0; x$=0; x001=0; x3=0; x;3=0; x23=0. (10.28)
Here, Oi = {ap} and the degree of the integral is
= 1day + 240 + 10as3.
10.4.11 The Dynkin diagram (10.22 g)
The Nichols algebra By is generated by (x;);e1; with defining relations

2 2
x7=0; x5 =0; [[x32,x321]c, x2]c =0;
12 2 32, A3211c 26c (10.29)

Here, Oi = {a2 + a3} and the degree of the integral is
= 4oy + 240 + 16a3.
10.4.12 The Dynkin diagram (10.22 h)
The Nichols algebra By is generated by (x;);cr; with defining relations

6 2 3
X :0, X :0, X :O, X :0, X :0, X :0,

1 2_ 3 112 - 113 332 (10.30)
x13) = q23(§ — Dlx13, x2]e + q12(1 — $Hxoxi3.
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Here, (’)i = {1} and the degree of the integral is
= 16a1 + 8anr + 14a3.
10.4.13 The Dynkin diagram (10.22 i)
The Nichols algebra By is generated by (x;);cr; With defining relations

2 3 2
x1=0; x =0 x3=0; [x23,x3].=0;
! 2 . 3 ¢ (10.31)
x21 =0; x13=0; X3 = 0; [x(13), x23]e = 0.

Here, Oj_ = {20 + a3} and the degree of the integral is
a = 8a1 + 300 + 16a3.
10.4.14 The associated Lie algebra

This is of type Aj.

10.5 Type ufo(5)

Here ¢ € (G/3. We describe first the root system ufo(5).

10.5.1 Basic datum and root system

Below, As, Ba, Ca, Ty and | T® are numbered as in (4.2), (4.7), (4.15), (3.11) and

(3.14), respectively. The basic datum and the bundle of Cartan matrices are described
by the following diagram:

By 534(Cs) 2 s24(T1) 1 k3(Aq)
° ° —_— ° Emm— °

aj as as a4

4 4 4

By 3 7 5241 T@) 3 524(B4)
° _— ° ° E— °

as ae a7 ag

2 | 2 | 2
K1 (Ag) 1 T 4 k2(Cs) 524(B4)

° _— ° _— ° °

ag aio ati arz

Using the notation (3.1), we set:

AP = {1,12,2,123,23,3,1234, 1223247, 123242, 12342, 12233445, 1223343 1223743, 123243,
1223344 1233445 1223445, 1223345 234, 23242 234223243 34,342 4},

AP = {1,12,2,123,23,3,1223%4, 122324, 123%4, 2374, 1223342, 12233943, 1233443, 1223443,
1234, 1223242 123242 1223343 12342 234,23242 34,2342 342 4},

AD = (1,12, 122,2, 12233, 1233, 1223, 123,23, 3, 1224374, 1224324, 1223324, 123324, 1223%4,
12324, 2324, 12243342 122334, 12334, 12234, 1234, 234, 34, 4},
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AP = {1,12,2,123,23,3,1223%4, 12243342, 12233942 1233942, 122324, 12233442, 1233442,
12243043 12324, 1223442 2324, 12243543 112233543 1233543 12233421234, 234, 34, 4},

Aﬁf) ={1,12,2,1223,123, 23, 3, 122324, 122324, 12324, 2324, 324, 12233342 1233342 1223342,
12234, 1234, 1223242 234, 123242 124, 23242 34,24, 4},

A® = (1,12,2,1223,122332 12332123, 12232, 23, 3, 1224374, 1224324, 1223334, 1233%4,

1223324, 123324, 122324, 12243342 12234, 1234, 124, 234, 34, 24, 4}.

Now the bundle of sets of (positive) roots is described as follows:

a) — A(l), at—> T <Af)) , az — Kg (AE?) , a4 > K4 <AS‘_‘)> ,
as +— A(z), ae > S34 (Af)) s aj +— K2(A$)), ag +—> $y4 (Af)) s

4 6 3 1
ag = 513 (Ai)), aio > k7 (Ai)), ap > K7 (Ai)) . an = su(AD).

10.5.2 Weyl groupoid
The isotropy group at a; € X is

Wiar) = (7", 63", 63" 64" 6362646164626364) = W (Ay).

10.5.3 Incarnation

We set the matrices (q(i))ie]l6, from left to right and from up to down:

- - = - =t -t ¢ —=¢ -t =¢ -t -1 -1
[e] [e] (o] [e] (o] (o] (o] (o]

- -t ¢ ¢ -1 - = ¢ -t —¢ -t -1 —C -
(o] (o] (o) o .

[e] [e] (] (]
(10.32)
-1 -1
(o) ()
-1 -
— i \
N I - =L -1 ¢ -1
(o] (o] (o] (o] (o] (o)
Now this is the incarnation:
ap — q, a — t(q?), az > k6(@?),  as > ka(@?),
as — q@, ag > 5304, a7 k@), ag > sq?),
ag = s13qY),  aw > k7d®),  an - @?),  an - s4@qW).
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10.5.4 PBW-basis and dimension
Notice that the roots in each Aff, i € 12, are ordered from left to right, justifying the
notation f, ..., Bas.

The root vectors xg, are described as in Remark 2.14. Thus

n2s ny_ ni

X2 XpXg |0 <mp < N,Bk} .
is a PBW-basis of By. Hence dim B, = 21035610 — 220315,
10.5.5 The Dynkin diagram (10.32 a)
The Nichols algebra By is generated by (x;);er, with defining relations

xi12=0; x21=0; x203=0; x;=0,i<j,q;=1
X M 0 (10.33)
x332 =0; x334 =0; X3 = 0; Xo = 0, x € O+.

Here 09 = (1.12.2,123,23,3,12233%4%, 123344, 1223445, 1223%4°) and the degree of the integral is
= 5001 + 90y + 1203 + 1404.
10.5.6 The Dynkin diagram (10.32 b)

The Nichols algebra By is generated by (x;);ey, with defining relations

xi12=0;  x221 =0; xij=0,i<j,q;=1
x223 =05 [x443,%43]c = 0;  [[x43,%432]¢, x3]c = 0; (10.34)
x%:O; xi:O; xS:O,ozeOi.

Here 0f = (1,12,2,122334,12233443 1233443, 1223443 1234?2342, 34?) and the degree of the inte-
gral is

a=50c1 + 90 + 1203 + 104a4.
10.5.7 The Dynkin diagram (10.32 c)
The Nichols algebra By is generated by (x;);ey, with defining relations

x12=0; xa3=0;, x;=0,i<]j,qi;=1;
3 > . 0 (10.35)
X5 =0; X3 =0; xazo,aeo+'

Here 0 = {1.12233,1233,1224334, 12324, 2324, 12243342 122334, 12334, 4) and the degree of the inte-
gral is

a="T6a1 + 1420 + 90a3 + 500y4.
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10.5.8 The Dynkin diagram (10.32 d)

The Nichols algebra By is generated by (x;);c1, with defining relations

X12=0; x201=0; x;=0, i<j, qg;i=1
E s (10.36)
xp3 =0 xa3=0; x3=0 x5=0 aeOf.

Here 0 =(1.12,2,122%3%42, 12233542 1233942,1224343 12233543 1233943, 4} and the degree of the
integral is

a=T6a; + 1420y + 1983 + 104ay4.
10.5.9 The Dynkin diagram (10.32 e)

The Nichols algebra By is generated by (x;);ey, with defining relations

x12=0; [oaxle=0; x3=0; x;=0,i<j gj=1;
X3 =0; [raaxsle =0 x3=0; x)=0 ac0Of; (10.37)

X3 =0; x4 = 2q3a¢[x24, X3]e + 2g23x3%24.

Here 07 = (1, 1223, 1223%4,3%4, 12233342, 1233342, 123242, 124,23%4?, 24 and the degree of the inte-
gral is

= 5001 + 90« + 104a3 + 760t4.

10.5.10 The Dynkin diagram (10.32 f)

The Nichols algebra By is generated by (x;);er, with defining relations

x112 =0; x§=0; xij=0, i<j, qj=1
[x124,%20c = 0; x3=0; x3=0; x$=0, @ €0Ol; (10.38)
x(4) = —q348 [x24, x3]c — q238X3X24.

Here of = {1,122332,12332, 1224324, 1223334, 123334, 122%3342 124, 34,24) and the degree of the
integral is

a=T6ay + 1420y + 1043 + 50a4.
10.5.11 The associated Lie algebra

This is of type Aj.
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10.6 Type ufo(6)

Here ¢ € G/;. We describe first the root system ufo(6).

10.6.1 Basic datum and root system

Below, Ay, Fy, D", Ty and | T are numbered as in (4.2), (4.35), (3.20), (3.11) and

(3.13), respectively. The basic datum and the bundle of Cartan matrices are described
by the following diagram:

B
Dy 2 Ay 3 suGT®) 4 Fy
[ ] — [ ) — [ ] — [ )
ai az as a4
1 1] 1]
Ag 3 1T 4 Ay
[ ) — [ ] — [ )
as ag a7
2| 2
T 524(T1)
[ ] [ ]
as ag
4| 4|
k2(Ag) 2 524(1T) 3 k2(Ag)
[ ] — [ ] — [ )
alo arl a2
1] 1] 1]
&) (DI
K2 (Fa) 2 s4GTY) 3 ka(Ag) 4 K2y
[ ] — [ ] — [ ) — [ ]
ap ayy ais aie

Using the notation (3.1), we set:

AY = (1,12,2,123,23,3, 122334, 122374, 12334, 2334, 1223547 334, 123%4,
12233043, 1223442 1233043 2324, 1223643 1223342, 123442 23442,
1223343324, 123342, 1234, 23342, 234,3%4% 34, 4},

AP = {1,12,2,123,23,3, 1323334, 1223334, 1222334, 1202324, 13243542,

122334, 13243442 13233342 19293043 13233342 122324, 13273043 12233442,
1324304312324, 132%3%43, 2324, 12233342 12223342 1223342 1234, 234,34, 4},

A = (1,12,2,123,23,3, 132734, 122334, 122734, 12224, 13273242, 1324342,
12234, 13233242 14253243 1323342 12233242 13293243 1224, 1223342
13243243, 13243431234, 234, 1222342, 122342, 124, 24, 34, 4},

A(j_” ={1,12,2,1%223,1223, 123,23, 3, 1324334, 1324324, 1323334, 1223334,
1323324,12033%4, 14273442 1222324,120234, 13253442 13243442 13243342,
122324, 12234, 13233342 1223334212324, 1234, 23%4, 234, 34, 4},

AD = {1,12,2,123,23,3, 123334, 122374, 122324, 23334, 1243742 22334, 1243442,
12233643 12324, 1233442 1234, 1273043, 1243043 1233342 22324, 12434
1223342233442 2324, 233342 223342 234,34, 4},

A = [1,12,2,123,23,3,12734, 12234, 1224, 2334, 1243242, 124342 2234,
12233243, 1233242 11234, 1233243, 123342224, 233242 11243243 23342,

234, 124343, 122342, 124,2234% 24,34, 4},
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AV = (1,12,2,1273,123,223,23, 3, 124334, 1243%4, 127334, 27334, 1233%4,

12253442 23324 1253%42 122324, 12234, 1243442, 1243342 22324, 2234,

1233342 12324, 1234, 233342, 2324, 234, 34, 4},

A® —{1,12,2,123,23,3, 122334, 122324, 12324, 2324, 12273342, 12233342,

1233342 12234, 12043443 12233242 1233242 1223342, 12243343 1234,

12233343, 1223242 1233343234, 1224, 122342, 124, 24, 34,4},

Now the bundle of sets of (positive) roots is described as follows:

3 .
ag — k7 (AS}); a; — Agl_),

ag — kg (Aﬁ”) ;

10.6.2 Weyl groupoid

The isotropy group at a; € X' is

i=1,2,5;

aiv> 53 (aY), i =3.46.7;

a; — kg (A$7_i)>, i=11,14; a; — k) (A$7_i)>, otherwise.

W(ar) = (1", 65" 636462645362, 65", 54') = W(G2) x W(G2).

10.6.3 Incarnation

We set the matrices (q*);cf,, from left to right and from up to down:

Now this is the incarnation:

ag = k7 (a®); @i q

(@)

I3 —1
o ¢}
_ 3
¢
-1 ¢ -1 -1 -
[0) e} o
3 ¢
[¢] [e]
_ 3
¢
I I
o o o
,i=1,2,5;

(10.39)

aj > s34 (q("))  i=3,4,6,7;
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ag — K¢ (q(g)) ;o a; > kg (q(”*i)) ,i=11,14; aj — ko (q(177i)) , otherwise.

10.6.4 PBW-basis and dimension

Notice that the roots in each A‘jﬁ', i € lje, are ordered from left to right, justifying the
notation S, ..., B30.
The root vectors xg, are described as in Remark 2.14. Thus

XL XEAR0 < mi < Ny |
is a PBW-basis of By. Hence dim B, = 218412 — 42,

10.6.5 The Dynkin diagram (10.39 a)

The Nichols algebra By is generated by (x;);ey, with defining relations

x112=0;  x33=0; xij=0,i<j,qij=1
[(xa3),x2le = 05 [[[x4),x3]c, x3]¢, x3]c = 0; (10.40)
X443 = 0; x% =0; xi =0, e Oi.
Here 09 = (1,3,3%4, 12324, 12233043, 1223442, 1233043 2324, 324,3342 34,4} and the degree of the

integral is

=300 + 54ar + 138a3 + 7204.

10.6.6 The Dynkin diagram (10.39 b)

The Nichols algebra By is generated by (x;);er, with defining relations

X443 = 0; x12=0; x,-j=0,i<j, Z]Jijzl;
[xa3y,x2]e = 0;  [[x23,[x23, x@4lele, x3]e = 0; (10.41)
x%:O; x32=0; xi:O,ani.

Here 09 = (12,23, 122324, 23334, 12293043 1233442, 1243043 22324, 2324, 233342, 234, 4} and the degree
of the integral is

a=30a1 + 1160y + 1383 + 72a4.
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10.6.7 The Dynkin diagram (10.39 c)
The Nichols algebra By is generated by (x;);c1, with defining relations
x21=0; x003=0; x{=0 x;=0i<j g;=1

x4 = 0; x32 =0; xf =0; x;‘ =0, xe Oi; (10.42)

X4y = q34¢[x24, x3]c + q23(1 + £)x3x24.

Here 0 = (2,123, 12234,2334,2%34,12273243, 123342, 233242 234, 12%343, 24, 34) and the degree of the
integral is

=300 + 11603 + 72a3 + 5204.

10.6.8 The Dynkin diagram (10.39 d)

The Nichols algebra By is generated by (x;);er, with defining relations

1201 =0; xa43=0; x2003=0; x;=0,i<j,q;=1
2 ) 2 x4 ;
=0, x3=0, x'=0ac0%; (10.43)
923943
1+¢

[x2, [x(24), x3]c]e = [x23, x4y le + (¢ — 1)q23q4x24)X23.

Here 09 = (2,23, 124324,23334,1233%4, 12273442, 122324, 22324, 123%4,233%42 234, 4) and the degree
of the integral is

=300 + 1162 + 98a3 + 5204.

10.6.9 The Dynkin diagram (10.39 e)

The Nichols algebra By is generated by (x;);cr, with defining relations

x021=0; x23=0; x;=0, i =1
) (10.44)
X443 = 0; x1=0; x 0 .

Here 0f = (2.123,1323334,12223%4, 13233342, 122324, 13253643, 12233%42, 13243043 12324, 1234,4) and
the degree of the integral is

a = 88ay + 116ap + 1383 + 72a4.
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10.6.10 The Dynkin diagram (10.39 f)

The Nichols algebra By is generated by (x;);cr, with defining relations

Xt =0; [x4,x)e = 0; x5=0; xj=0,i<jGj=1
x3=0; [[xinxanlexle=0 x3=0 xi=0 aec0f; (10.45)

x33 =05 x4) = q34¢[x24, x3]¢ + q23(1 + £)x3x24.

Here 0% = {12,23,132%34,122734, 12234, 13233242, 13293243 1223342, 1324343, 1234, 124,34} and the
degree of the integral is

= 88ay + 1160y + 72a3 + 5204.
10.6.11 The Dynkin diagram (10.39 g)

The Nichols algebra By is generated by (x;);er, with defining relations

2 . .~
_)5443:07 X7 = 7 X :0; _X":O’ 1< . :1;

; N M / qq” (10.46)
[[x12, x(3)les x2]e =05 x3 =0; x33=0; x, =0, a € O}.

Here 0f = {12,123, 1324324, 1323334, 1223324, 1222324, 13273442 122324, 13233342, 1234, 2324, 4) and the
degree of the integral is

a = 88a; + 116ay + 983 + 52a4.
10.6.12 The Dynkin diagram (10.39 h)

The Nichols algebra By is generated by (x;);ey, with defining relations

x112=0; xu3=0; x3=0; x;=0,i<jgij=1
X447 = 0; x§3 =0; x% =0; xg =0, a e Oi; (10.47)

[x124, 22]c = 0;  x24) = g34¢[x24, X3]c + g23(1 + $)x3%24.

Here 0% = (1.3.1223%4,122324,12243%42 12234, 1234,12233343, 1223242 1233343 234, 1224) and the
degree of the integral is

a=52a1 + 98wy + 72a3 + 884.

10.6.13 The associated Lie algebra

This is of type G2 x G.
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10.7 Type ufo(7)

Here ¢ € G/,. We describe first the root system ufo(7).

10.7.1 Basic datum and root system

Below, A\"”, By, C; and G are numbered as in (3.2), (4.7), (4.15) and (4.43),
respectively. The basic datum and the bundle of Cartan matrices are described by
the following diagram:

()
Ga 2 C 1 A 2 B 1 7(G2)
o L J [ ] L J e .
aj az az ay as

Using the notation (3.1), the bundle of (positive) root sets is the following:

Aj_l — {1’ 132’ 122’ 12, 2} - T(A‘f)’ Aﬁ? = {1, 122, 12, 122’ 2}’
AP ={1,1%2,192%,12,2} = 1 (A%).

10.7.2 Weyl groupoid
The isotropy group at az € X' is

Wa3) = (s> 2616261 = 65°61626162) == Z/2.
10.7.3 Incarnation

This is called ufo(7). We assign the following Dynkin diagrams to a;, i € Is:

-2 ¢ -0 7T -7 = =
ayt— o o, dayt+—> o o, az3tr> o o
(10.48)
-1 - ¢ -1 -t -
as— o o, ast> o o .

10.7.4 PBW-basis and dimension

Notice that the roots in each A’jr", i € I, are ordered from left to right, justifying the

notation B, B2, B3, P4, Ps.
The root vectors xg, are described as in Remark 2.14. Thus

n
Xzt 10 < me < Ny, |

is a PBW-basis of 4. Hence dim B, = 2%3%4 = 144.
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10.7.5 The Dynkin diagram (10.48 a)
The Nichols algebra By is generated by (x;);c1, with defining relations
X} =0; x5 =0; [x112, x12]c = 0.

Here, (’)i is empty and the degree of the integral is &7 = 1201 + 60t3.

10.7.6 The Dynkin diagram (10.48 b)

The Nichols algebra By is generated by (x;);e1, with defining relations
X =0; x5 =0; [[x112, X12]e, x12]e = 0.

Here, (’)i is empty and the degree of the integral is &7 = 12a1 + 8.

10.7.7 The Dynkin diagram (10.48 c)

The Nichols algebra By is generated by (x;);e1, with defining relations

§4QI2 2

3
XTH =
3); 2

x; =0; x; =0; [x1, x122]c +

Here, Oj_ is empty and the degree of the integral is # = 8c; + Sas.

10.7.8 The Dynkin diagram (10.48 d)

(10.49)

(10.50)

(10.51)

This diagram is of the shape of (10.48 b) but with ¢> instead of ¢. Therefore the

corresponding Nichols algebra has relations analogous to (10.50).

10.7.9 The Dynkin diagram (10.48 e)

This diagram is of the shape of (10.48 a) but with ¢> instead of ¢. Therefore the

corresponding Nichols algebra has relations analogous to (10.49).

10.7.10 The associated Lie algebra

This is trivial.

10.8 The Nichols algebras ufo(8)

Here ¢ € G),.
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10.8.1 Basic datum, root system and Weyl groupoid

The root system is of type ufo(7) as in Sect. 10.7.1; hence the Weyl groupoid is as
in Sect. 10.7.2.

10.8.2 Incarnation

This is a new incarnation, denoted ufo(8). We set the matrices (q(i))ie]l3, from left to
right:

N B 2o 2 2
i S S S SN (10.52)
Now this is the incarnation:
a; — q(i), i €ls; a; — t(q(ﬁ_i)), ielys.

10.8.3 PBW-basis and dimension

Notice that the roots in each A(_ﬁ, i € Is, are ordered from left to right, justifying the

notation 1, f2, 3. fa. Bs.
The root vectors xg, are described as in Remark 2.14. Thus

Pt 10 < me < N |

is a PBW-basis of 4. Hence dim By = 223212 = 432.

10.8.4 The Dynkin diagram (10.52 a)

The Nichols algebra By is generated by (x;);e1, with defining relations
12 _ o 2 _ 0. — 0 _
xi-=0; x5 =0; x11112 = 0; [x112, x12]c = 0. (10.53)
Here, Oj_ = {o} and the degree of the integral is &7 = 20| + 16c3.

10.8.5 The Dynkin diagram (10.52 b)

The Nichols algebra By is generated by (x;);e1, with defining relations
3_ 0. 2 _ 0. 12 _ 0. _
x; =0; x5y =0; x5 =0; [[x112, x12]¢s X12]c = 0. (10.54)
Here, Oj_ = {1 + a2} and the degree of the integral is s = 200| + 1607.
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10.8.6 The Dynkin diagram (10.52 c)
The Nichols algebra By is generated by (x;);c1, with defining relations
=0 3 =0 xi3=0 [oxnle=0+¢+)0 ). (1055
Here, Oi = {1 + a2} and the degree of the integral is s = 161 + 16c3.
10.8.7 The associated Lie algebra

This is of type Aj.

10.9 Type ufo(9)

Here ¢ € G),. We describe first the root system ufo(9).

10.9.1 Basic datum and root system

Below,C3, G2, Hs,1 and H> 3 are numbered as in (4.43), (4.15) and (3.21), respectively.

The basic datum and the bundle of Cartan matrices are described by the following
diagram:

Hs | 2 O 1 Hyj3 2 (G
[ ] { [ ) e .
aj a as as

Using the notation (3.1), the bundle of root sets is the following:

AL = {1,172, 192,172, 1°2%, 172,12, 2},
A ={1,122,152%, 1722, 1423 1524, 12, 2},
A% = (1,1%2,12, 1223, 1324, 122,123, 2},
A ={1,12,12231%2°, 1727, 122, 123, 2}.

10.9.2 Weyl groupoid
The isotropy group at ay € X is
Wiaz) = (61762616261, 63°6162) = Z/2 X /2.
10.9.3 Incarnation
We set the matrices (q(i))ie]l4, from left to right:

6 _7 _74 6 7 7 s _
¢ ¢ OC IS f; ¢ ¢ 1 g ¢ 1. (10.56)

(o} o o
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Now this is the incarnation:

ay — q(4), ap — q(3), az — r(q(l)), as — ‘C(q(2)).
10.9.4 PBW-basis and dimension
Notice that the roots in each Aﬁf, i € Iy, are ordered from left to right, justifying the

notation Sy, ..., Bs.
The root vectors xg, are described as in Remark 2.14. Thus

{xgs .. xgjxgll |0 < ny < Nﬂk} .
is a PBW-basis of 4. Hence dim By = 22324224 = 21234,
10.9.5 The Dynkin diagram (10.56 a)

The Nichols algebra By is generated by (x;);e1, with defining relations
4 .
xp =0; xmz =0; x12 =0
5 (10.57)

1+¢7
x5 =0; [x1,x12])c = mf Y125

Here, 0 = {31 + a2, @1 + a2} and the degree of the integral is
T g g

= 108a; + 58a>.
10.9.6 The Dynkin diagram (10.56 b)

The Nichols algebra By is generated by (x;);e1, with defining relations

xP=0; x3*=0; xPL =0, x01=0; [[x112, x12le, x12le =0.  (10.58)
Here, (91 = {201 4+ a2, oz} and the degree of the integral is
A= Tday + 60as.
10.9.7 The Dynkin diagram (10.56 c)

The Nichols algebra By is generated by (x;);e1, with defining relations

xi = 0; x5 =0; [x112. [x112, x12]]2* = 0; Xy =0; (10.59)

I +¢+¢°4207+¢"

l+c4+4c0+c11 §9QI2[X112, xlz]g =0.

[x112, [[x112, X121es X12]c]e —
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Here, Oi = {Sa1 4+ 32, a1 + @2} and the degree of the integral is
a=168a; + 112a5.
10.9.8 The Dynkin diagram (10.56 d)

The Nichols algebra By is generated by (x;);e1, with defining relations

24 2 24
x;7 =0; x5 =0; [x L, X =0;
1 5 [x1112, X112]; (10.60)
xii12 = 0; [x112, x12]c = 0.

Here, (’)i = {Sa1 4 2w, a1} and the degree of the integral is
A= 168a1 + 58a;.

10.9.9 The associated Lie algebra

This is of type A} x Aj.

10.10 Type ufo(10)

Here ¢ € G),. We describe first the root system.

10.10.1 Basic datum and root system

Below, G, and Aéz) are numbered as in (4.43) and (3.4), respectively. The basic datum
and the bundle of Cartan matrices are described by the following diagram:

2) (2)
Ga 2 A; 1 A5 2 G2
@ [ ] [ ] o .
ai ap as as

Using the notation (3.1), the bundle of root sets is the following:

AY = {1,172,172,1°2°, 122,192 12,2} = AY,
AP = {1,142, 192, 192%,172, 1322, 12,2} = AY.

10.10.2 Weyl groupoid

The isotropy group at a; € X is
Wiar) = (1", 63" §16261626162) = Z/2 x /2.
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10.10.3 Incarnation

We assign the following Dynkin diagrams to a;, i € I4:

¢ T -1 -7 B -
ap— o o, a+— o )
(10.61)
—2 3 =3
- = -1 -t =T -1
a3z t— o o, da4t> o o .

10.10.4 PBW-basis and dimension

Notice that the roots in each A'jr", i € I, are ordered from left to right, justifying the
notation By, ..., Bs.
The root vectors xg, are described as in Remark 2.14. Thus

{xgi .. xgjxgll |0 <ng < N,gk} .
is a PBW-basis of 4. Hence dim B, = 2#5%20% = 160000.

10.10.5 The Dynkin diagram (10.61 a)

The Nichols algebra By is generated by (x;); 1, with defining relations

20 2 20
=0 = 0; , - =0
Xi X5 [x112, x12]5 (10.62)
xiir2 =05 [[[x112, x12le, x12]e, X12]e = 0.
Here, Oj_ = {a1, 31 + 202} and the degree of the integral is
= 100a1 + 54cs.
10.10.6 The Dynkin diagram (10.61 b)
The Nichols algebra By is generated by (x;);e1, with defining relations
5 .20 .20 .
=0 X =05 xi3 =05
) 1 — 17 5 (10.63)
x5 =05 [x1, [x112, X12]e]e + 1_—42611236112 =0.

Here, Oj_ = {31 + a2, o1 + a2} and the degree of the integral is

= 100a; + 48c7.
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10.10.7 The Dynkin diagram (10.61 c)

This diagram is of the shape of (10.61b) but with —¢ instead of ¢ . Thus the information
on the corresponding Nichols algebra is analogous to (10.63).

10.10.8 The Dynkin diagram (10.61 d)

This diagram is of the shape of (10.61a) but with —¢ instead of ¢ . Thus the information
on the corresponding Nichols algebra is analogous to (10.62).

10.10.9 The associated Lie algebra

This is of type A} x Aj.

10.11 Type ufo(11)

Here ¢ € G/|5. We start by the root system ufo(11).

10.11.1 Basic datum and root system

Below, Agz), C; and Hj 3 are numbered as in (3.4), (4.15) and (3.21), respectively.
The basic datum and the bundle of Cartan matrices are described by the following
diagram:

[ ] L] @
ap as az ag

(2) (2)
Ay 1 Ay 2 C 1 H2,3

Using the notation (3.1), the bundle of root sets is the following:

A = {1,1%2,1°2, 172, 122, 1423 12, 2},

AP ={1,1%2,1°2,182°, 1°22, 172, 12, 2},

AP ={1,1%2,1°2%, 1825, 13221423 12, 2},
AY ={1,1%2,12, 1223122, 1225, 123, 2).

10.11.2 Weyl groupoid

The isotropy group at a; € X is

W(a1) = (51" $26162616261, 65') = Z/2 X /2.
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10.11.3 Incarnation
We assign the following Dynkin diagrams to a;, i € I4:

—4

N A ¢ -2 -1

ay— o o, ayt> o o,
(10.64)

77 o - 70

a3 — o o, a4 — o o .

10.11.4 PBW-basis and dimension

Notice that the roots in each Aﬁf, i € Iy, are ordered from left to right, justifying the
notation Sy, ..., Bs.
The root vectors xg, are described as in Remark 2.14. Thus

{xgs .. xgjxgll |0 <ny < Nﬂk} .
is a PBW-basis of 4. Hence dim B, = 223252307 = 243454,

10.11.5 The Dynkin diagram (10.64 a)

The Nichols algebra By is generated by (x;); 1, with defining relations

=0 x°=0; [x1,[x112,x12lc]e = 1 n 574 qraxtis; (10.65)
=0, xo1 =0; [[[x112, X12]e» x12)es X12]e = 0.
Here, (’)i = {2, 2a1 + »} and the degree of the integral is
a = 86a1 + 72w).
10.11.6 The Dynkin diagram (10.64 b)
The Nichols algebra By is generated by (x;);e1, with defining relations
=0 x% =0 [x112, x12]c = 0; (10.66)

3=00 x5, =0 [[xi112, X112, X1121e = 0
Here, Oi = {41 + a2, 201 4+ a2} and the degree of the integral is

a=210a; + 72a.
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10.11.7 The Dynkin diagram (10.64 c)

The Nichols algebra By is generated by (x;);c1, with defining relations

. , 30 _ g,
3 =0 3,;2 =0; ([x112, x12]c, X121 = 0; (10.67)
xi12 =05 [[[x112, x12]e, X12]e, *12]c = 0.

Here, (’)1 = {41 4 302, 201 + a2} and the degree of the integral is
=210« + 1400;.
10.11.8 The Dynkin diagram (10.64 d)

The Nichols algebra By is generated by (x;);e1, with defining relations

13

1+¢12

30 . )
X112 =05 x11112 =05 [[x112, x12]es X121 = 0.

10 2 )
¢ qxiy =05

30 3
xi- =0; x5 =0; [x1,x +
i 5 [x1, x122]c (10.68)
Here, (91 = {01, 301 + 2} and the degree of the integral is
= 140a; + 74as.
10.11.9 The associated Lie algebra

This is of type A} x Aj.

10.12 Type ufo(12)
Here ¢ € G/. We start by the root system ufo(12).
10.12.1 Basic datum and root system

Below, G, and Hs 1 are numbered as in (4.43) and (3.21), respectively. The basic
datum and the bundle of Cartan matrices are described by the following diagram:

G> 3 Hs 1
o———eo .
ai az

Using the notation (3.1), the bundle of root sets is the following:

ag = {172,122, 17241923, 192%, 1922, 1725, 142, 1924, 12,2

a2 = {1,192, 1%2,1722, 172, 192, 1922, 1723, 122, 1922, 12,2}
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10.12.2 Weyl groupoid

The isotropy group ata; € X' is
W(a) = (51", 63" 6162) = D.
10.12.3 Incarnation

We assign the following Dynkin diagrams to a;, i € Ip:

— _"7 pa— _3 J—
a0 =9 @ o 3. (10.69)

10.12.4 PBW-basis and dimension

Notice that the roots in each Ai", i € Ip, are ordered from left to right, justifying the
notation fi, ..., B12.
The root vectors xg, are described as in Remark 2.14. Thus

X2 ’“|o<nk<Nﬁk}

is a PBW-basis of By. Hence dim B, = 20146 = 21276,

10.12.5 The Dynkin diagram (10.69 a)

The Nichols algebra By is generated by (x;);e1, with defining relations

. 2 )
xi112=0;  x3 =0; [[x112,x12]c,)€12] =0;

14 _ q.
xm =0; [x112, x12]." = 0;

=0, X3 =0, [xin2, [xn2, 2l = 0; (10.70)

1 -3¢ 32473 -3¢

2
Ny R [x112, x12]%-

[x112, [[x112, X12]65 X12]c]e = q12

Here, 01 = {a1, 201 +2, Sy 4302, 4oy + 302, 3001 + 200, ¢y + a2} and the degree
of the integral is

a = 238a; + 150a;.
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10.12.6 The Dynkin diagram (10.69 b)
The Nichols algebra By is generated by (x;);c1, with defining relations

2 _ o 14 .14 . 14 _ 0.
xy =0; xi5=0; xi7110=0; [x1112, x112]." = 0;
14 _ . 14 _ g 14 _ Q.

X7 =0; x5,=0; x7;p=0; (10.71)

1+¢4 ,

xinne =05 [x [xn2, xi2lele = 12— %{12-

21

Here, Oi = {1, 4o + a2, 301 + a2, Sap + 200, 201 + @2, @ + a2} and the degree
of the integral is

a=238a; + 90a;.
10.12.7 The associated Lie algebra

This is of type Go.
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